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Abstract. We provide a model theoretic version of the “complemented
partitions of unity” (CPoU) property for C∗-algebras introduced by
Castillejos, Evington, Tikuisis, White, and Winter. It is shown that
this tracial transfer property is equivalent to CPoU. In particular, the
tracial transfer property holds for all Z-stable C∗-algebras with compact
trace simplex.
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Introduction

def:transfer Definition A. A C∗-algebras A with T (A) non-empty and compact has the
tracial transfer property if

thm:main Theorem B. A C∗-algebras A with T (A) non-empty and compact has the
tracial transfer property if and only if it has CPoU.
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1. Tracially complete C∗-algebras
sec:tc-prelmin

In this preliminary subsection, we briefly recall some background on tra-
cially complete C∗-algebras from [?]. For a C∗-algebra A, let T (A) denote
the set of tracial states on A with the weak∗ topology inherited from the
dual of A. We will typically assume T (A) is compact—this is automatic, for
example, if A is unital.

sec:tc-def
1.1. Basic definitions and notation. Given a non-empty set X ⊆ T (A),
define the uniform 2-seminorm on A by

eq:2u-seminormeq:2u-seminorm (1.1) ‖a‖2,X := sup
τ∈X

τ(a∗a)1/2, a ∈ A.

The notations ‖·‖2,u and ‖·‖2,τ stand for ‖·‖2,X in the cases when X = T (A)
(here “u” standards of “uniform”) and X = {τ}, respectively. Note that the
function T (A) → R : τ 7→ τ(a∗a) is affine and weak∗-continuous. Hence
when X is weak∗-compact and convex, the supremum in (1.1) is obtained at
an extreme point of X. We let ∂eX ⊆ X denote the set of extreme points.

Following [?, Definition ?], a tracially complete C∗-algebra M = (M, X)
is a pair consisting of a C∗-algebra M and a weak∗-compact, convex set
X ⊆ T (M) such that the uniform 2-seminorm ‖ · ‖2,X is a norm on M
and the operator norm unit ball of M is ‖ · ‖2,X -complete. Note that M
is necessarily unital (see []). For τ ∈ X, consider the GNS representation
πτ : M→ B(Hτ ) corresponding to τ . We say M is of type II1 if πτ [M]′′ is of
type II1 for all τ ∈ X ([]), and we say M is factorial if πτ [M]′′ is a factor for
all τ ∈ ∂eX ([, ]). Note that by [, ], M is factorial if and only if X is a face in
T (M) (i.e., for all τ1, τ2 ∈ T (M) with 1

2(τ1 + τ2) ∈ X, we have τ1, τ2 ∈ X.)
Given a C∗-algebra A with a weak∗-compact and convex set X ⊆ T (A),

Ozawa defined the tracial completion of A in [] (under the name strict clo-

sure) to be the C∗-algebra A
X

formed by adding a limit point to every
‖ · ‖2,X -Cauchy, ‖ · ‖-bounded sequence in A. In this case, each trace τ ∈ X
extends canonically to a trace on A

X
, still denoted τ , and after identifying

X with the corresponding subset of T
(
A
X)

, the pair
(
A
X
, X
)

is a tracially
complete C∗-algebra. In the case X = T (A), we denote the tracial com-

pletion by
(
A

u
, T (A)

)
. In the case X = {τ}, the tracial completion can be

identified with the tracial von Neumann algebra (πτ [A]′′, τ).

sec:tc-ultraproduct
1.2. Ultraproducts. For a free ultrafilter U on an index set J,1 and let
Mj := (Mj , Xj) be a tracially complete C∗-algebra for each j ∈ J. Let∏
j∈JMj denote the `∞-product of theMj (i.e., all ‖·‖-bounded, J-indexed

sequences with j-th entry in Mj , and define

(1.2)
∏UMj :=

∏
j∈JMj/

{
(aj)j∈J ∈

∏
j∈JMj : limj→U ‖aj‖2,Xj = 0

}
.

1In most of our arguments, J will be N.
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We freely identify elements of
∏
j∈JMj with their equivalence classes in∏UMj .

Any family of tracial states (τj)j∈J with τj ∈ Xj for all j ∈ J induces a

tracial state τ̄ on
∏UMj defined by

(1.3) τ̄
(
(aj)j∈J

)
:= lim

j→U
τj(aj).

A tracial state on
∏UMj which can be written this way is called a limit

tracial state. The set of limit tracial states is convex but is not necessarily
weak∗-closed ([3, Theorem 1.3]). Let

∑U Xj denote the weak∗-closure of the

limit tracial states in T
(∏UMj

)
.

The pair
∏U Mj :=

(∏UMj ,
∑U Xj

)
is then a tracial complete C∗-

algebra, called the ultraproduct of the collection {Mj}j∈J. When J = N,
this follows from [?]. In general, FINISH. What is the most

efficient way of do-
ing this?

In the case of Mj = M for all j ∈ J, we write MU in place of
∏U Mj

and call MU the ultrapower of M. Further, if (M, X) := M, then we write
(MU , XU ) := MU . In this case, we identify M as a subset of MU by
identifying a ∈M with the equivalence class of the constant sequence (a)j∈J.

Note that this embedding M→MU is isometric with respect to both the
operator norm and the uniform 2-norm.

In the proof of Theorem A.1 of the appendix we show that, when con-
sidering tracially complete C∗-algebras endowed with the model theoretic
structure introduced in §??, the definition above agrees with the standard
definition of ultraproducts of metric structures. In other words, we prove
that

∑U Xj (or equivalently
∏U Xj) gives rise to the ultraproduct of the

norms {‖ · ‖2,Xj}j∈J, and that the definition of ultraproduct above provides
the right notion of ultraproduct in the category of tracially complete C∗-
algebras.

sec:tc-central-sequence
1.3. Central sequences. Let M := (M, X) be a tracially complete C∗-
algebra and let U be an ultrafilter on an index set J. As in §1.2, let MU =
(MU , XU ) denote the ultrapower of M and identify M as the subalgebra
of MU consisting of (the equivalence classes of) constant sequences. We let

(1.4) MU ∩M′ := {a ∈MU : [a, b] = 0 for all b ∈M}

denote the central sequence algebras of M. When M is not separable (i.e.,
M is not ‖ · ‖2,X -separable, se will often consider C∗-algebras of the form

MU ∩ S′ for a ‖ · ‖2,X -separable set S ⊆M in place of MU ∩M′.
For our purposes, the following is the most important property of tracially

complete C∗-algebras. This was introduced in [] in the context of (uniform
tracial completions of) C∗-algebras and extended to tracially complete C∗-
algebras in [].

Definition 1.1. A factorial tracially complete C∗-algebras M = (M, X) has
complemented partitions of unity (CPoU) if for every ‖ · ‖2,X -separable set



4 FARAH, HART, HIRSHBERG, SCHAFHAUSER, TIKUISIS, AND VACCARO

S ⊆M, a1, . . . , an ∈M+, and δ > 0 satisfying

(1.5) sup
τ∈X

min
1≤i≤n

τ(ai) < δ,

there are projections p1, . . . , pn ∈MU ∩ S′ such that
∑n

i=1 pi = 1MU with

(1.6) τ(aipi) < δτ(ai), τ ∈ Xω, i = 1, . . . , n.

We note that if A is a Z-stable C∗-algebras with T (A) compact, then
the uniform tracial completions of A,

(
A

u
, T (A)

)
, has CPoU by []. More

generally, by the same result, if A is a Z-stable C∗-algebra and X ⊆ T (A)

is a weak∗-compact face, then
(
A
X
, X
)

is a factorial tracially complete C∗-
algebra with CPoU.

2. Group actions on tracially complete C∗-algebras
sec:group-actions

ADD SOME TEXT HERE. HAVE THESE BEEN CONSIDERED ELSE-
WHERE?

2.1. Actions and completions. Let G be a discrete group, let A be a
C∗-algebra, and let α : G → Aut(A) be an action. The action α induces
a (left) affine G-action α∗ on T (A) defined as α∗g(τ) = τ ◦ αg−1 . With a
slight abuse of notation, we drop the dual symbol and we simply say that τ
is α-invariant if α∗g(τ) = τ for all g ∈ G. Similarly, we say that X ⊆ T (A)
is α-invariant if α∗g[X] = X for all g ∈ G. Finally, we denote the set of all
α-invariant tracial states in X by Xα.

Recall that by Day’s fixed point theorem [31, Theorem 1.3.1], a group G is
amenable if and only if every affine G-action has a fixed point. In particular,
it follows that Xα is always nonempty when X ⊆ T (A) is weak∗-compact,
convex and α-invariant, and G is amenable. Most statements in this paper
will not require amenability of G, but will instead assume that there exists
a normal subgroup of finite index H ≤ G such that the action of H on X is
trivial. This condition also easily implies that Xα is non-empty.

A G-tracially complete C∗-algebra is a triple M := (M, X, α) where
(M, X) is a tracially complete C∗-algebra, α : G→ Aut(M) is an action (by
C∗-automorphisms), and X ⊆ T (M) is α-invariant. We say M is factorial
whenever (M, X) is factorial (i.e. X is a face in T (M)). Note that tracially
complete C∗-algebras can be recovered as a special case of G-tracially com-
plete C∗-algebras by imposing that G is the trivial group (or more generally,
allowing G to be arbitrary and imposing that α is the trivial action).

Suppose A is a C∗-algebra, X ⊆ T (A) is a weak∗-compact, convex set,
and α : G→ Aut(A) is an action such that α∗g(X) ⊆ X for all g ∈ G. Then

αg extends to an endomorphism αXg of the tracially complete C∗-algebra(
A
X
, X
)

by [?, ]. Further,

(2.1) αXgh = αXg α
X
h , g, h ∈ G,
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as this equality holds when restricted to A and both sides of the equality are
‖ · ‖2,X -contractive. Since α1 = idA, we have αX1 = idM, and hence there is
a group homomorphism

(2.2) αX : G→ Aut
(
A
X)

: g 7→ αXg .

Then the triple M :=
(
A
X
, X, αX

)
is a G-tracially complete C∗-algebra.

Specializing to the case when X is a point, if α : G → Aut(A) is an ac-
tion of a group G on a C∗-algebra A and τ ∈ T (A) is α-invariant, then
the action α on A can be canonically extended to the von Neumann alge-
bra πτ [A]′′ obtained from the GNS representation πτ associated to τ . We
denote such extension by ατ . Analogously to the non-equivariant case, the
triple (M, {τ}, α), where M is a finite von Neumann algebra and τ is an
α-invariant faithful tracial state will be abbreviated as (M, τ, α).

2.2. Actions with small orbits. This section contains some preliminary
results concerning group actions on C∗-algebras whose orbits on the tracial
state space are small—in particular, we require each orbit is finite, and
further, we require a uniform bound on the cardinality of the orbits. This
ensures that the action of the group on the trace simplex factors through an
action of a finite group. This subsection collects some technical results about
such actions for use in the proof of an equivariant version of Theorem B (see
Theorem ??).

The following lemma is the main role of the small-orbit condition on group
actions.

lemma:uniformlybounded Lemma 2.1. Suppose that G is a group and (M, X, α) is a G-tracially com-
plete C∗-algebra such that the action induced by α on X has orbits whose
cardinalities are uniformly bounded by a constant C. Then

eq:inv-boundeq:inv-bound (2.3) ‖ · ‖22,Xα ≤ ‖ · ‖22,X ≤ C‖ · ‖22,Xα .

In particular, the norms ‖ · ‖2,X and ‖ · ‖2,Xα are equivalent.

Proof. Fix τ ∈ X and let G · τ denote the G-orbit of τ . Since X is an
α-invariant, convex subset T (M), the tracial state

(2.4) τα :=
1

|G · τ |
∑
σ∈G·τ

σ

belongs to Xα. Moreover, for every b ∈M+ the inequality

|G · τ | · τα(b) =
∑
σ∈G·τ

σ(b) ≥ τ(b)

holds, and therefore ‖ · ‖2,X ≤ C1/2‖ · ‖2,Xα . Since Xα ⊆ X, the other
inequality follows. �

It is not difficult to see that the conclusion of Lemma 2.1 cannot be
improved to ‖ · ‖22,Xα = ‖ · ‖22,X . Take for exampleM to be the direct sum of

n ≥ 2 copies of a II1 factor N , X = T (M), and the finite group G to be Z/n
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acting onM by cyclicly permuting the minimal summands. Then Xα is the
average of the tracial states of the copies of N , and the two norms clearly
differ. In fact, this example also shows that the bounds in (2.3) are sharp;
indeed, the minimal value of C is n, and then the left bound is obtained at
1M and the right bound is attained at a minimal central projection of M.

The next proposition and its corollary provide some useful consequences
about the extension of an action α on a C∗-algebra A to the von Neumann
algebra πτ [A]′′ when τ is an α-invariant trace on A.

prop:trace-centre Proposition 2.2. Suppose that G is a group and (M, X, α) is a G-tracially
complete C∗-algebra. Let h ∈ G be such that σ ◦ αh = σ for every σ ∈ X.
Then, for all τ ∈ Xα, the automorphism ατh of πτ [M]′′ restricts ot the
identify on the centre of πτ [M]′′.

Proof. Let h ∈ G be such that σ ◦ αh = σ for every σ ∈ X. Towards
a contradiction, given τ ∈ Xα, suppose that the action ατh is non-trivial
on the centre Z(πτ [M]′′). Since this is a von Neumann algebra, there is
a non-zero projection p ∈ Z(πτ [M]′′) such that ατh(p)p = 0. Indeed, since
Z(πτ [M]′′) is the closed span of its projections, there is a non-zero projection
q ∈ Z(πτ [M]′′) such that q 6= ατh(q). The projection p := q−ατh(q)q has the
required property.

The functional σ := 1
τ(p)τ(pπτ (·)) is a tracial state on M. Further, as

X is a face in T (M), τ ∈ X, and σ ≤ τ(p)τ , we have that σ ∈ X. By
assumption it follows that σ ◦ αh = σ, which in turn implies, by density of
πτ [M] in πτ [M]′′,

(2.5) 0 =
1

τ(p)
τ(pατh(p)) =

1

τ(p)
τ(p) = 1,

which is a contradiction. �

Corollary 2.3. If G and (M, X, α) are as in Proposition 2.2 and the action
induced by α on X factors through a finite group action, then so does the
restriction of the action ατ to the centre of πτ [M]′′, for every τ ∈ Xα. �

2.3. Ultraproducts and equivarant CPoU.

TO DO: Update

def:cpou Definition 2.4 (Dynamical Complemented Partitions of Unity). Let U be
a free ultrafilter on N. Suppose that G is a discrete group and let M :=
(M, X, α) be a G-tracially complete C∗-algebra such that Xα 6= ∅. We
say that M has α-invariant complemented partitions of unity (abbreviated
α-CPoU ) if for every collection a1, . . . an ∈M+, every δ > 0 such that

sup
τ∈Xα

min{τ(a1), . . . , τ(ak)} < δ,

and every ‖ · ‖2,XU -separable S ⊆ MUX , there are orthogonal projections

p1, . . . , pn ∈MUX ∩ S′ such that
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(1)
∑n

i=1 pi = 1,
(2) (αU )g(pi) = pi for all i ≤ n and g ∈ G,
(3) τ(piai) ≤ δτ(pi) for all i ≤ n and τ ∈ (Xα)U .

For a (not necessarily G-tracially complete) C∗-algebra A, we say that A

has α-CPoU if (A
T (A)

, T (A), α) has α-CPoU.

WHEN DOES α-CPoU HOLD? DO WE HAVE A GOOD NOTION OF
α-Γ, FOR EXAMPLE?

TO DO: Move elsewhere.

Subhomogeneous formulas were defined in the paragraph preceding Corol- Move this text
and Prop. 2.5
elsewhere.

lary 7.3. The following completes the proof of such Corollary.

proposition:subhomog Proposition 2.5. Let G be a discrete group. Suppose that M := (M, X, α)
is a factorial G-tracially complete C∗-algebra, and that the action induced by
α on X has orbits whose cardinalities are uniformly bounded by a constant
C. Denote (M, Xα, α) by Mα. If ψ(x̄) is a subhomogeneous max-formula,
then for every tuple ā in M of the appropriate sort

ψMα

(ā) ≤ ψM(ā) ≤ CψMα

(ā).

Proof. Suppose that ψ(x̄) is a quantifier-free L‖·‖2,G-formula of the form

max{h1(‖Q1(x̄)‖22), . . . , hk(‖Qk(x̄)‖22)},
where Q1(x̄), . . . , Qm(x̄) are G-∗-polynomials and each hj : R → R is an
increasing, convex, subhomogeneous function. For a tuple ā in M of the
appropriate sort, by using the inequalities ‖Qj(ā)‖22,Xα ≤ ‖Qj(ā)‖22,X for

j ≤ m (Lemma 2.1) and the monotonicity of each hj , we have

ψMα

(ā) ≤ ψM(ā).

For the other inequality, by Lemma 2.1 and the subhomogeneity of hj for
j ≤ k, we have

max{h1(‖Q1(ā)‖22,X), . . . , hm(‖(Qm(ā)‖22,X)} ≤
≤ max{C · h1(‖Q1(ā)‖22,Xα), . . . , C · hm(‖(Qm(ā)‖22,X)}
= C ·max{h1(‖Q1(ā)‖22,Xα), . . . , hm(‖(Qm(ā)‖22,X)}.

This proves the assertion for the quantifier-free formulas. Since the inequal-
ities are preserved by taking infs and sups, the desired conclusion follows by
induction on the number of quantifiers in ψ. �

The following is an immediate consequence of Lemma 2.1. What is the point
of this? I don’t
think it belongs
here in any case.

remark:EquivNorms Corollary 2.6. Suppose that G is a discrete group and that (M, X, α) is
a factorial G-tracially complete C∗-algebra such that the action induced by
α on X has orbits which are uniformly bounded in size by some constant
C ∈ N. Then the norms ‖ · ‖22,Xα and ‖ · ‖22,X are equivalent. Therefore
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(M, Xα, α) is G-tracially complete, and an L‖·‖2,G-structure. Moreover,

every ultrafilter U satisfies MUX =MUXα. �

3. A strong form of CPoU
NEEDS WORK

GENERAL EXPOSITION
Should highlight CPoU+ (currently Lemma ?? a bit more, I think.

3.1. Complemented partitions of unity.

3.2. Proof of Theorem ??.

TO DO:. Read/rewrite: text below copy-and-pasted from earlier draft.

lemma:cpou+.0 Lemma 3.1. Suppose that (M, X) is a factorial tracially complete C∗-algebra
with CPoU. Suppose there are δ > 0 and ai,j ∈ M+ for i ≤ n and j ≤ m
such that

sup
τ∈X

min
i≤n

max
j≤m

τ(ai,j) < δ.

Then, for every ‖ ·‖2,XU -separable S ⊆MUX , there are projections p1, . . . , pn
in MUX ∩ S′ such that

∑n
i=1 pi = 1 and

τ(piai,j) ≤ δτ(pi) for all i ≤ n, j ≤ m and τ ∈ XU .

Lemma 3.1 is a special case of its dynamical analog, Lemma 3.2; hence
we will prove only the latter.

lemma:cpou+ Lemma 3.2. Let G be a discrete countable group and let (M, X, α) be a
factorial G-tracially complete C∗-algebra with α-CPoU. Suppose that the
action induced by α on X factors through a finite group action. Let δ > 0
and ai,j ∈M+ for i ≤ n and j ≤ m be such that

sup
τ∈Xα

min
i≤n

max
j≤m

τ(ai,j) < δ.

Then, for every ‖ · ‖2,XU -separable S ⊆ MUX , there are orthogonal αU -

invariant projections p1, . . . , pn ∈MUX ∩ S′ such that
∑n

i=1 pi = 1 and

τ(piai,j) ≤ δτ(pi) for all i ≤ n, j ≤ m and τ ∈ (Xα)U .

Proof. Fix, for the rest of the proof, a free ultrafilter U on N. Let (ai,j)
n,m
i=1,j=1 ⊆

M+ and δ > 0 be as in the assumption of the lemma. By Proposition 7.7,
it suffices to provide a proof in the case when S =M.

The existence of p1, . . . , pn as required can be expressed in terms of
satisfiability of an n-type (see §4.5). The type, denoted t(x̄), consists
of the formulas2 (recall that τ+ was defined in Definition 5.9 and that
ϕp(x) = max{‖x− x∗‖22, ‖x2 − x‖22} as in Example 5.4)

ϕp(xi), ‖[b, xi]‖2, ‖αg(xi)− xi‖2, τ+((δ − ai,j)xi)

2A formula ψ corresponds to the condition asserting ψ = 0, hence a set of formulas
determines a type.



THE TRACIAL TRANSFER PROPERTY 9

for all i ≤ n, j ≤ m, g ∈ G, and all b in a fixed countable dense subset ofM.
A proof that t(x̄) is satisfiable, given in the following claim, comprises the
bulk of the ongoing proof.

Cl.p1-pn Claim 3.3. For any ε > 0, any finite F ⊂M and any finite K ⊆ G, there
are positive contractions p1, . . . , pn ∈MUX such that

(1) ‖
∑n

i=1 pi − 1‖2,XU ≤ ε,
item:cpou+2 (2) ‖pi − p2

i ‖2,XU ≤ ε for all i ≤ n,
item:cpou+3 (3) ‖pib− bpi‖2,XU ≤ ε for all i ≤ n and b ∈ F ,

item:cpou+4 (4) ‖(αU )g(pi)− pi‖2,XU ≤ ε for all i ≤ n and g ∈ K,

item:cpou+5 (5) τ(ai,jpi) ≤ δτ(pi) + ε for all i ≤ n, j ≤ m and τ ∈ (Xα)U .

Proof. Fix τ ∈ Xα. The von Neumann algebra πτ [M]′′ is finite hence it has
a centre-valued tracial state ([34, Theorem V.2.6])

Tr : πτ [M]′′ → Z(πτ [M]′′),

such that every tracial state σ on πτ [M]′′ filters through Tr, i.e., σ = σ ◦Tr.
By our assumption, there exists a normal subgroup H ≤ G of finite index
such that the action induced by H on X is trivial. By Proposition 2.2, ατh
acts like the identity on Z(πτ [M]′′) for all h ∈ H. Pick a single element
from each left coset of H in G, and let {g1, . . . , gN} be the set obtained from
this selection. For i ≤ n and j ≤ m, define

eq:cijeq:cij (3.1) cτi,j :=
1

N

N∑
s=1

ατgs(Tr(πτ (ai,j))).

Since Tr is completely positive, each cτi,j is positive, ‖cτi,j‖ ≤ ‖ai,j‖, it

belongs to Z(πτ [M]′′), it is ατ -invariant, and σ(cτi,j) = σ(πτ (ai,j)) for all

σ ∈ T (πτ [M]′′)α
τ
.

We will now define a local approximation (p̃τi )i≤n to the required tuple
(pi)i≤n. Since Z(πτ [M]′′) is a von Neumann algebra, there exists the largest
ατ -invariant central projection q in πτ [M]′′ such that

q(δ − c1,j) ≥ 0

for all j ≤ m. Denote this projection by p̃τ1 .
By induction on 2 ≤ i ≤ n, define p̃τi as the largest ατ -invariant projection

in Z(πτ [M]′′) below 1−
∑i−1

h=1 p̃
τ
h such that

Eq.p.cEq.p.c (3.2) p̃τi (δ − cτi,j) ≥ 0

for all j ≤ m. This construction produces orthogonal projections p̃τ1 , . . . , p̃
τ
n ∈

Z(πτ [M]′′) which we claim also satisfy
∑n

i=1 p̃
τ
i = 1. Indeed, suppose that

q0 := 1 −
∑n

i=1 p̃
τ
i is non-zero. By maximality of p̃τ1 , there are a non-zero

central projection q1 ≤ q0 and j1 ≤ m such that q1(δ− cτ1,j1) < 0. Since cτ1,j1
is ατ -invariant, we can assume that q1 is ατ -invariant as well. By repeating
this argument for all i ≤ n, one finds non-zero, ατ -invariant, central projec-
tions q1 ≥ q2 ≥ · · · ≥ qn in πτ [M]′′ such that for every i ≤ n there is ji ≤ m
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which satisfies qi(δ − cτi,ji) < 0. This implies

1

τ(qn)
τ(qnπτ (ai,ji)) =

1

τ(qn)
τ(qnc

τ
i,ji) > δ,

for all i ≤ n. Notice that the restriction of 1
τ(qn)τ(qnπτ (·)) to M is a tracial

state in Xα. Indeed, as X is a face it follows that it belongs to X, while
it is invariant since τ ∈ Xα and qn is ατ -invariant and central. This is a
contradiction, since by the assumptions of this lemma we have

sup
σ∈Xα

min
i≤n

max
j≤m

σ(ai,j) < δ.

For every i ≤ n and j ≤ m, let

eq:bijeq:bij (3.3) b̃τi,j := p̃τi (δ − cτi,j).

By (3.2) we have 0 ≤ b̃τi,j ≤ δp̃τi . As a product of ατ -invariant elements, it
is ατ -invariant.

Also

zτi,j := b̃τi,j −
1

N

N∑
s=1

ατgs(δp̃
τ
i − πτ (ai,j)p̃

τ
i )

belongs to the nullset of Tr. Therefore, by [13, Théorème 3.2], there are

x̃
(i,j,τ)
1 , . . . , x̃

(i,j,τ)
10N , ỹ

(i,j,τ)
1 , . . . , ỹ

(i,j,τ)
10N in πτ [M]′′ each of norm not greater than

12‖zτi,j‖ and such that

1

N

N∑
s=1

ατgs(δp̃
τ
i − πτ (ai,j)p̃

τ
i ) = b̃τi,j +

10N∑
h=1

[x̃
(i,j,τ)
h , ỹ

(i,j,τ)
h ].

We can estimate ‖zτi,j‖ as follows. Since each p̃τi is ατ -invariant and central,

by the equalities (3.1) and (3.3) we have

zτi,j = b̃τi,j − δp̃τi +
1

N

N∑
s=1

ατgs(πτ (ai,j))p̃
τ
i

= (δ − cτi,j)p̃τi − δp̃τi +
1

N

N∑
s=1

ατgs(πτ (ai,j))p̃
τ
i

=
1

N

N∑
s=1

ατgs(πτ (ai,j)− Tr(πτ (ai,j)))p̃
τ
i .

Since ‖πτ (ai,j)− Tr(πτ (ai,j))‖ ≤ 2‖ai,j‖, this implies

‖zτi,j‖ ≤ 2‖ai,j‖.
Fix ε0 > 0 to be specified later (impatient readers may want to take a peek
at (3.4)). Since ‖ · ‖2,τ induces the strong operator topology on bounded

sets, by Kaplansky’s Density Theorem there are bτi,j , p
τ
i , x

(i,j,τ)
h , and y

(i,j,τ)
h

in M such that

item:i (i) ‖b̃τi,j − πτ (bτi,j)‖2,τ < ε0 and bτi,j ≥ 0 for all i ≤ n and j ≤ m,



THE TRACIAL TRANSFER PROPERTY 11

(ii) ‖p̃τi − πτ (pτi )‖2,τ < ε0 and 0 ≤ pτi ≤ 1 for all i ≤ n,

(iii) ‖x̃(i,j,τ)
h − πτ (x

(i,j,τ)
h )‖2,τ < ε0 for all i ≤ n, j ≤ m and h ≤ 10N ,

(iv) ‖ỹ(i,j,τ)
h − πτ (y

(i,j,τ)
h )‖2,τ < ε0 for all i ≤ n, j ≤ m and h ≤ 10N .

item:v (v) ‖bτi,j‖ ≤ ‖b̃i,j‖, ‖pτi ‖ ≤ ‖p̃i‖, ‖x
(i,j,τ)
h ‖ ≤ ‖x̃(i,j,τ)

h ‖, and ‖y(i,j,τ)
h ‖ ≤

‖ỹ(i,j,τ)
h ‖.

Define sτ ∈M+ as

sτ :=

(
1−

n∑
i=1

pτi

)2

+
n∑
i=1

(pτi − (pτi )2)2+

+
∑
b∈F

n∑
i=1

(pτi b− bpτi )2 +
∑
g∈K

n∑
i=1

(αg(p
τ
i )− pτi )2+

+

n∑
i=1

n∑
j=1

(
1

N

[
N∑
s=1

ατgs(πτ (ai,j)p
τ
i − δpτi )

]
+ bτi,j +

10N∑
h=1

[x
(i,j,τ)
h , y

(i,j,τ)
h ]

)2

.

We will prove that

Eq.tau(c)Eq.tau(c) (3.4) τ(sτ ) ≤ (n2 + 9n+ 4n|F |max
b∈F
‖b‖2 + 4n|K|

+ nm((max
i,j
‖ai,j‖+ δ)2 + 1 + 10N · 962 max

i,j
‖ai,j‖2))ε20.

The previously established norm estimates (i)–(v) entail that

‖1−
∑
i

pτi ‖2,τ ≤ ‖1−
∑
i

p̃τi ‖2,τ + nε0 ≤ nε0,

‖pτi − (pτi )2‖2,τ < 3ε0,

‖[pτi , b]‖2,τ ≤ 2‖b‖ε0 for all b ∈ F ,

and (since αg is an isometry) ‖αg(pτi )− pτi ‖2,τ < 2ε0 for all g ∈ K. Also, for
i ≤ n, j ≤ m, and h ≤ 10N we have

‖[x(i,j,τ)
h , y

(i,j,τ)
h ]− [x̃

(i,j,τ)
h , ỹ

(i,j,τ)
h ]‖2,τ

< (2‖x̃(i,j,τ)
h ‖+ 2‖ỹ(i,j,τ)

h ‖)ε0 ≤ 48‖zτi,j‖ε0 ≤ 96 max
i,j
‖ai,j‖ε0,

and

‖ατgs(πτ (ai,j)p
τ
i − δpτi )− ατgs(πτ (ai,j)p̃i − δp̃i)‖2,τ < (‖ai,j‖+ δ)ε0.

Using τ(|x|2) = ‖x‖22,τ and ‖xy‖2,τ ≤ ‖x‖‖y‖2,τ , and by adding up the

previous estimates, the inequality (3.4) follows. By taking ε0 small enough
we can suppose that τ(sτ ) < ε2/C, where C := [G : H].

Being a closed face of T (M), X is weak∗-compact, and so is its closed
subset Xα. Thus, there exist ` ≥ 1 and τ1, . . . , τ` in X such that

sup
τ∈Xα

min
k≤`

τ(sτk) < ε2/C.
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Since (M, X, α) has α-CPoU, there are pairwise orthogonal projections
q1, . . . , q` ∈MUX ∩M′ such that

(a)
∑`

k=1 qk = 1,
(b) (αU )g(qk) = qk for all g ∈ G and k ≤ `,

item:cpou+:c (c) τ(sτkqk) ≤ (ε2/C)τ(qk) for all k ≤ ` and τ ∈ (Xα)U .

For i ≤ n, j ≤ m, and h ≤ 10N , let

bi,j :=
∑`

k=1 qkb
τk
i,j , pi :=

∑`
k=1 qkp

τk
i , x

(i,j)
h :=

∑`
k=1 qkx

(i,j,τk)
h and

y
(i,j)
h :=

∑`
k=1 qky

(i,j,τk)
h .

Since qk and pτki are commuting projections, each pi is a positive contraction.

Given a tracial state τ ∈ (Xα)U , since (1−
∑n

i=1 p
τk
i )2 < sτk for all k ≤ `,

we have

‖1−
∑n

i=1 pi‖22,τ = ‖
∑`

k=1 qk(1−
∑n

i=1 p
τk
i )‖22,τ ≤

∑`
k=1 τ(qksτk)

≤
∑`

k=1 τ(qk)(ε
2/C)

= ε2/C.

Hence, by Lemma 2.1,

‖1−
∑n

i=1 pi‖2,XU ≤ C1/2‖1−
∑n

i=1 pi‖2,(Xα)U ≤ ε.

In a similar fashion, using the definition of sτk , one checks that p1, . . . , pn
satisfy clauses (2)–(4). We finally check that clause (5) holds. Fix τ ∈
(Xα)U . Then, using the fact that for i ≤ n, j ≤ m and k ≤ ` we have(

1

N

[
N∑
s=1

ατgs(πτ (ai,j)p
τk
i − δp

τk
i )

]
+ bτki,j +

10N∑
h=1

[x
(i,j,τk)
h , y

(i,j,τk)
h ]

)2

< sτk ,

and that q1, . . . qk are orthogonal αU -invariant projections in MUX ∩ M′
adding to 1, along with the fact τ(qksτk) < (ε2/C)τ(qk) for all k, we ob-
tain ∥∥∥∥∥ 1

N

[
N∑
s=1

(αU )gs(ai,jpi − δpi)

]
+ bi,j +

10N∑
h=1

[x
(i,j)
h , y

(i,j)
h ]

∥∥∥∥∥
2,τ

< ε.

Therefore, for i ≤ n and j ≤ m

τ(ai,jpi − δpi) = τ

(
1

N

N∑
s=1

(αU )gs(ai,jpi − δpi)

)
< ε− τ(bi,j) ≤ ε,

where the first equality holds since τ is αU -invariant, and the last one since
bi,j ≥ 0, being a sum of positive elements. �

Claim 3.3 implies that every finite subset of t(x̄) is approximately sat-
isfiable in M. Since MUX is countably saturated (Theorem 4.5), t(x̄) is
satisfiable in MUX . Any tuple p1, . . . , pn that satisfies t(x̄) is as required,
and this concludes the proof. �
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4. The language of tracially complete C∗-algebras
sec:language

In the context of continuous model theory, C∗-algebras and von Neu-
mann algebras are customarily interpreted as structures in the languages
introduced in [17, §2] (to which we refer for all basic definitions on con-
tinuous model theory for operator algebras; see also [16]). In this section
we present two new languages, L‖·‖2 and L‖·‖2,G, which provide a suitable
framework for tracially complete and G-tracially complete C∗-algebras.

MORE HERE?
sec:LL

4.1. The language L‖·‖2. The language L‖·‖2 has a single sort with count-
ably many domains Dn, it contains two constant symbols 0 and 1, symbols
for the algebraic operations +, ·, and ∗, a symbol λ for each λ ∈ C and it
is equipped with a symbol for the tracial norm ‖ · ‖2. The metric on the When we define

L‖·‖2,G, we may a
big deal that G
should be count-
able so that the
language is count-
able. We can’t in-
clude a symbol for
each λ in C if we
want a countable
language!

structures in this language that satisfy the theory of interest is canonically
associated with the norm, and we therefore omit a symbol for this metric.
The moduli of continuity assigned to the algebraic operations are chosen in
the natural fashion.

Let (M, X) be a tracially complete C∗-algebra. The pair (M, X) can be
thought of as an L‖·‖2-structure, with the symbol ‖·‖2 interpreted as ‖·‖2,X ,
the operation symbols interpreted in the obvious way, and Dk interpreted
as the k-ball in the operator norm. This defines an equivalence between
appropriate categories (see Theorem A.1).

I don’t understand
this sentence. The
definition of TC in
the appendix also
seems wrong. Is
the point that TC-
algebras are ax-
iomatizable in the
language L2?

The language L‖·‖2 is equipped with an infinite set of variables. Each
variable is associated with a domain Dk for some k ≥ 1, and there are
infinitely many variables associated with each Dk. The association of x
with Dk signifies that in every interpretation, x ranges over the operator
norm k-ball of the tracially complete C∗-algebra under consideration. In
order to relax the terminology, we will say that a tuple ā = (a1, . . . , an) is
of the appropriate sort for a tuple of variables x̄ = (x1, . . . , xn) if aj belongs
to the domain associated with xj , for each j = 1, . . . , n.

The terms in the langugage L‖·‖2 are ∗-polynomials in non-commuting
variables. Formulas are defined by recursion on their complexity in the
standard fashion, as in [17, §2.4]. Atomic formulas are of the form ‖t‖2, for
a term t. The set of formulas is the smallest set that contains all atomic
formulas and it has the following closure properties.

F.1 (F1) If n ≥ 1, g : Rn → R is uniformly continuous, and ϕj is a formula
for j = 1, . . . , n, then g(ϕ1, . . . , ϕn) is a formula.

F.2 (F2) If ϕ is a formula, x is a variable of the sort Dk for some k ≥ 1 then
sup‖x‖≤k ϕ and inf‖x‖≤k ϕ are formulas.

definition:interpretation Definition 4.1 (Interpretation of formulas). Given a ∗-polynomial Q(x̄), if
ϕ(x̄) = ‖Q(x̄)‖2 is an atomic formula in L‖·‖2 , M := (M, X) is a tracially
complete C∗-algebra, and ā is a tuple in M of the same sort as x̄, then the
interpretation of ϕ(x̄) in M at ā is

(4.1) ϕM(ā) := ‖Q(ā)‖2,X .
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Given an arbitrary L‖·‖2-formula ϕ(x̄), the interpretation of ϕ(x̄) in M at ā
is defined recursively, interpreting (F1) and (F2) in the natural way, and is
denoted by ϕM(ā) (see [16, §2.1] for details).

Suppose that A is a C∗-algebra and X ⊆ T (A) is a weak∗-compact, convex
set. If (A,X) is not tracially complete, then it is, according to the standard
definition, not an L‖·‖2-structure. This is because in a metric structure each
sort is required to be complete. However, if ϕ(x̄) is an L‖·‖2-formula and

ā is a tuple in A of the appropriate sort, then ϕ(A,X)(ā) can be defined as

in Definition 4.1. If M := (A,X), then we have ϕ(A,X)(ā) = ϕM(ā) for all
tuples ā in A of the appropriate sort. Because of this, all of our transfer
results can be stated in terms of tracially complete C∗-algebras or in terms
of C∗-algebras with a weak∗-compact, convex set of traces.

In the special case of a C∗-algebra A and a trace τ ∈ T (A), when A is
clear from context, we write

(4.2) ϕτ (ā) := ϕ(πτ [A]′′,τ)(πτ (ā)),

where (πτ [A]′′, τ) is viewed as a tracially complete C∗-algebra with the set
of distinguished traces being the singleton {τ} and where, for a tuple ā =
(a1, . . . , an) in A,

(4.3) πτ (ā) := (πτ (a1), . . . , πτ (an)).

Remark 4.2. The described language of strict closures of C∗-algebras is a
reduct of the language of tracial von Neumann algebras described in [17,
§2.3.2]. The latter language in addition contains function symbols trr and
tri for the real and imaginary parts of the tracial state. To a certain extent,
in tracially complete C∗-algebras the role of trr is played by the definable
predicate τ+ (Definition 5.9). Note that tri is redundant, being definable
from trr as tri(a) = −itrr(ia).

sec:LLG
4.2. The language L‖·‖2,G. Fix a countable group G. The language L‖·‖2,G
is the expansion L‖·‖2,G := L‖·‖2 ∪ {αg : g ∈ G}, where each αg is a unary
function symbol. The modulus of continuity for each αg assures that it is
1-Lipshitz (i.e., a contraction). Countability of G is used only to assure the
countability of the language and the separability of the space of formulas of
the language (with respect to the norm defined in §4.3).

Given a tuple ȳ = (y1, . . . , yn) of variables in L‖·‖2,G and g ∈ G, we denote
the tuple (αg(y1), . . . , αg(yn)) by αg(ȳ). For a tuple of non-commuting vari-
ables ȳ = (y1, . . . , yn), we use the abbreviation G-∗-polynomial in the vari-
ables ȳ to refer to a ∗-polynomial in the non-commuting variables (αg(ȳ))g∈G.
The G-∗-polynomials are the terms of L‖·‖2,G. This granted, the formulas of
L‖·‖2,G are defined recursively, as in (F1) and (F2) above.

Consider a G-tracially complete (M, X, α). The triple (M, X, α) can
be thought of as an L‖·‖2,G-structure after interpreting (M, X) as an L‖·‖2
structure as in §4.1 and interpreting the unitary symbol αg as the automor-
phism αg for g ∈ G.
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In analogy to Definition 4.1, if ϕ(x̄) is an L‖·‖2,G-formula, M := (M, X, α)
is a G-tracially complete C∗-algebra, and ā is a tuple in M, the evaluation
of ϕ at ā in M, again denoted ϕM(ā), is defined recursively like in the non-
equivariant case, and it is concretely obtained by interpreting ‖·‖2 as ‖·‖2,X .

Given a C∗-algebra A and an action α : G → Aut(A), in the case when
τ ∈ T (A)α and A and α are clear from the context, we write

(4.4) ϕτ (πτ (ā)) := ϕ(πτ [A]′′,τ,ατ )(πτ (ā)).
S.Theories

4.3. Theories, axiomatizable classes. Let L ∈ {L‖·‖2 ,L‖·‖2,G}, where G
is a countable group. For a fixed tuple x̄ of variables, all L-formulas with the
free variables included among x̄ form an R-algebra (see (F1)), denoted Fx̄L.
The L-sentences (i.e., formulas with no free variables) form an R-algebra,

denoted F
〈〉
L .

The theory of an L-structure M (such asG-tracially complete C∗-algebras),

denoted Th(M), is the kernel of the character3 on F
〈〉
L defined by ϕ 7→ ϕM.

A class C of L-structures is elementary (or axiomatizable) if there is T ⊆ F
〈〉
L

such that M ∈ C if and only if T ⊆ Th(M). The set T is called the theory of
C.

A class of structures in the same language is axiomatizable if and only
if it is closed under ultraproducts, ultraroots, and isomorphisms ([16, The-
orem 2.4.1]). This is used in the appendix to show that the class of all
tracially complete C∗-algebras, as well as some other relevant subclasses
of this category, are axiomatizable. We will often implicitly use this fact
throughout the paper, starting from the next subsection.

S.expand
4.4. Expanding the language. It is often possible (and convenient) to
expand the language by adding function and predicate symbols. Towards
this end, following [16, §3.1], we first introduce definable predicates.

Def.Definable Definition 4.3. Let L ∈ {L‖·‖2 ,L‖·‖2,G} for a countable group G and fix
an elementary class of L-structures C and a tuple of variables x̄ in L. On
the R-algebra Fx̄L of all L-formulas in the variables x̄, define the seminorm

(4.5) ‖ϕ(x̄)‖C := sup
M,ā
|ϕM(ā)|,

where the supremum is taken over all M in C and all ā of the appropriate
sort in M. By Wx̄

C we denote the Banach algebra obtained by quotienting
and completing Fx̄L with respect to ‖ · ‖C . The elements of this algebra are
the definable predicates.

Definable functions are defined analogously by recursively using the clo-
sure properties (F1) and (F2). The only instances of definable functions
needed in the present paper are given by applications of continuous func-
tional calculus, as discussed in [16, §3.4] and recorded in the following result.

3It is sometimes convenient to identify the theory with this character.
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L.def.exp Lemma 4.4. Let L = L‖·‖2 (resp., L = L‖·‖2,G for a coutnable group G)
and let L′ is the expansion of L obtained by adding the following.

(1) A symbol exp for the exponential function (with the appropriate mod-
ulus of uniform continuity).

(2) For each continuous f : R → C, a symbol for f to be interpreted as
a 7→ f((a+ a∗)/2).4

Then the formulas in L′ are all definable predicates in the theory of tracially
complete C∗-algebras (resp. G-tracially complete C∗-algebras).

Proof. This is a consequence of the Stone–Weierstrass theorem, by which
the *-polynomials (which are terms in L) are uniformly dense in C(X) for
every compact X ⊆ R, and can thus approximate any given f ∈ C(X). �

Since the set of normal elements is not definable in the theory of C∗-
algebras, in case of arbitrary C∗-algebras this lemma cannot be extended to
accommodate the full continuous functional calculus (see [16, §3.4]).

S.Conditions
4.5. Conditions and (model-theoretic) types. Fix a language L. A
condition is an expression of the form ϕ(x̄) = r for an L-formula ϕ(x̄) (cf.
[17, §2.4]). If the formula ϕ belongs to the language expanded by constants“cf.” or “see” or

“see . . . , for exam-
ple”?

for elements of a fixed structure M,, we then say that ϕ(x̄) = r is a condition

This will be an
uncountable lan-
guage. Is that a
problem?

over M. A condition ϕ(x̄) = r is satisfied by ā in a structure M if ϕM(ā) = r.
Since the condition ϕ(x̄) = r is equivalent to the condition ϕ(x̄)− r = 0, we
will consider only conditions of the form ϕ(x̄) = 0.

It is convenient (and harmless) to allow more general conditions of the
form ϕ(x̄) = r, where ϕ is a definable predicate. A particularly useful case
is when the terms in ϕ use continuous functional calculus (see Lemma 4.4).
Such condition can be uniformly approximated by standard conditions.

Let x̄ = (x1, . . . , xn). An n-type (or a type5 if n is understood) t(x̄) is
a set of conditions in the variables x̄, and it is a type over a structure M
if all of its conditions are conditions over M. Given that all conditions
in any type considered in this paper will be of the form ϕ(x̄) = 0, the
type can be identified with the set of these formulas ϕ(x̄).6 A type t(x̄)
over a structure M is approximately satisfiable if for every finite subset of
t(x̄) and every ε > 0, there exists b̄ in M of the appropriate sort such
that |ϕM(b̄)| < ε for every ϕ(x̄) in the subset. Thus an n-type over M is
approximately satisfiable if it is a weak∗-limit of (naturally defined) types
of n-tuples in M of the appropriate sort. A type t(x̄) over M is satisfiable

4The self-adjoint partMsa is a definable subset of every tracially complete C∗-algebra
M, hence we could interpret f as a function on Msa.

5All types considered here will be partial types in the sense of [16]. Since we will have
no use for complete types, we will consistently write “type” in place of “partial type”.

6In the setting of [16, §4.1], types are identified with real linear functionals on a subset
of the algebra of formulas, and the set of formulas considered here is the kernel of this
functional. Note that this kernel will typically contain definable predicates that are not
formulas themselves.
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if there exists some b̄ in the domain of M of the appropriate sort such that
ϕM(b̄) = 0 for all ϕ(x̄) in the type.

A structure M is countably saturated if every countable type that is ap-
proximately satisfiable in M is satisfiable in M.7 A structure M is quantifier-
free countably saturated if every countable quantifier-free type that is ap-
proximately satisfiable in M is satisfiable in M.

The following is well-known. What does the
theorem below
mean? Is this in
any language L?
In the theory of
tracially complete
C∗-algebras? Is
the relative com-
mutant defined
in this level of
generality?

T.saturated Theorem 4.5.

(1) Every ultraproduct associated with a free ultrafilter on N is countably
saturated.

(2) Every reduced product associated with the Fréchet filter is countably
saturated.

(3) If M is countably saturated and S ⊆ M is separable, then the relative
commutant M ∩ S′ is countably quantifier-free saturated.

Proof. For the first part see [2] or [14, Theorem 16.4.1]. The second is [14,
Theorem 16.5.1]. In the case of C∗-algebras with the usual language (i.e.
where the norm is interpreted as the uniform norm instead of the tracial
norm, like in this paper), the third part is [14, Corollary 16.5.3]; the proof
of the general case is analogous. �

5. The tracial transfer property
sec:transfer-def

In this section we introduce the notion of tracial transfer property (§5.2)
Before doing so, we isolate a specific class of formulas to which our transfer
results apply in §5.1 and set out some further prerequisites in §§??–??.

REVISIT
S.convex.increasing

5.1. Max and convex formulas and their zero sets. In the following
definition, and later on in the paper, for every n ≥ 1 we will need a norm on
the n-th power of each of the normed spaces considered. We will be using
the max-norm, and for a tuple x̄ = (x1, . . . , xn) in a normed space, we write

Eq.MaxnormEq.Maxnorm (5.1) ‖x̄‖ := max{‖x1‖, . . . , ‖xn‖}.

Needless to say, ‖ · ‖ will often stand for one of the 2-norms associated with
a tracially complete C∗-algebras or tracial von Neumann algebras.

Readers familiar with the recursive definition of formulas in logic of metric
structures will find some of the following definitions familiar. We follow the
convention according to which inf corresponds to the existential quantifier
and sup corresponds to the universal quantifier.

Definition 5.1. Let G be a countable group.def.Aconvex

7A type is countable if it is countable as a set of conditions. Equivalently, one can
consider types that are separable as subsets of the Banach algebra Wx̄

C defined in §4.4.
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1.def.Aconvex (1) Let ϕ(x̄) be a quantifier-free L‖·‖2-formula (or an L‖·‖2,G-formula) of
the form

h(‖Q1(x̄)‖22, . . . , ‖Qk(x̄)‖22),

where k ≥ 1, Qj for 1 ≤ j ≤ k are ∗-polynomials (orG-∗-polynomials)

in the non-commuting variables x̄, and h : Rk → R is continuous. If
h is a convex function, then ϕ is said to be a quantifier-free convex
formula.

1.def.max (2) A L‖·‖2-formula (or an L‖·‖2,G-formula) ϕ(x̄) is a quantifier-free max-
formula if it has the form

(5.2) max{h1(‖Q1(x̄)‖22), . . . , hk(‖Qk(x̄)‖22)},
where k ≥ 1, Qj for 1 ≤ j ≤ k are ∗-polynomials (orG-∗-polynomials)
in the non-commuting variables x̄, and hj : R→ R for 1 ≤ j ≤ k are
continuous, increasing, convex functions. Note that every quantifier-
free max-formula is automatically (equivalent to) a quantifier-free
convex formula, since the connective max is convex.

(3) A formula of the form inf‖x̄‖≤1 ϕ(x̄), for some quantifier-free convex
formula ϕ, is called ∃-convex formula. The ∃-max formulas are
defined analogously.

(4) If ψ is an ∃-convex formula, then sup‖x̄‖≤1 ψ(x̄) is called an ∀∃-convex
formula. ∀∃-max formulas are defined analogously.

(5) By induction on the complexity of a formula, we define convex for-
mulas as follows. If ϕ is convex and x̄ is a tuple of variables, then
both sup‖x̄‖≤1 ϕ(x̄) and inf‖x̄‖≤1 ϕ(x̄) are convex. The max-formulas
are defined analogously.

6.def.Aconvex (6) A predicate which is definable in the theory of tracially complete C∗-
algebras is convex-definable (resp., max-definable, ∃-max-definable,
∀∃-convex-definable, etc.) if it is a uniform limit, in such theory, of
formulas that are convex (resp., max, ∃-max, ∀∃-convex, etc.).

In particular, in the definitions of quantifier-free max and convex formulas,
the ∗-polynomials Qj can be replaced by terms in the expanded language
(see §4.4), and therefore possibly include, e.g., the exponential function, or
the square root function applied to a positive operator (see Lemma 4.4).

1.Ex.formula Example 5.2. The formula max{‖x− x∗‖22, ‖x− x2‖22} is a quantifier-free
max formula. The predicate inf‖y‖≤1 ‖x− exp(2πiy∗y)‖22 is an ∃-max defin-
able predicate.

Def.convex.condition Definition 5.3. A condition (see §4.5) of the form ϕ(x̄) = 0 is convex if
the formula ϕ(x̄) is convex. Conditions are said to be ∀∃-convex, max, etc.
if the the formula ϕ(x̄) has the corresponding property.

A type is convex (resp., max, ∀∃-convex, etc.) if all of its conditions are
convex (resp., max, ∀∃-convex, etc.).

Be aware that many elementary formulas are left out by the classes of
formulas we just defined. For instance, atomic formulas are not necessarily
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convex, since in our definitions, we consider exclusively formulas where the
norm ‖·‖2 appears squared. This is needed for some computations appearing
later in the paper (e.g., in the proof of Theorem 6.2). These restrictions are
often only formal, as in many cases, like in the atomic one, the kernel (or
zero-set) of a positive formula does not change when its atomic subformulas
are replaced by their squares. This is important since a formula often serves
primarily as a mean for defining its kernel.

For a language L ∈ {L‖·‖2 ,L‖·‖2,G} and a L-structure M := (M, X) or
M := (M, X, α), the zero set of an L-formula ϕ(x1, . . . , xn) in M is denoted

(5.3) ZM(ϕ(x̄)) := {ā ∈Mn : ϕM(ā) = 0},
where we implicitly assume that ā ranges over all tuples of the appropriate
sort.

Ex.formulas Example 5.4. Each of the following sets is the zero set of a quantifier-free,
max-formula (see [16, Example 3.2.7]).

(1) The set of all self-adjoint elements is the zero-set of

(5.4) ‖x− x∗‖22
.

3.Ex (2) The set of all projections is the zero-set of

(5.5) max{‖x− x∗‖22, ‖x2 − x‖22}.
(3) The set of all unitaries is the zero-set of

(5.6) max{‖x∗x− 1‖22, ‖xx∗ − 1‖22}
(the second expression in the maximum is redundant in stably finite
C∗-algebras, and therefore in tracially complete C∗-algebras).

4.Ex (4) For n ≥ 2, the set of all n2 tuples that are the Mn-matrix units is
the zero-set of

(5.7) max
i,j≤n
k 6=k′≤n

{‖xij − x∗ji‖22, ‖xij − xikxkj‖22, ‖xikxk′j‖22}.

(5) As in [16, §3.4], we can expand the language to accommodate con-
tinuous functional calculus (see also Lemma 4.4), by adding symbols
for certain continuous functions. With this convention applied to
the exponential function, the formula

(5.8) inf
‖z‖≤1

‖x− exp(2πiz∗z)‖22

is ∃-max, and its zero-set is the set of all elements that can be approx-
imated by unitaries that have a positive logarithm of the minimal
possible norm, 2π.

A word of caution is warranted: to an L‖·‖2- or L‖·‖2,G-formula ϕ one
can associate a formula of the language of C∗-algebras ϕ′, by replacing all
instances of ‖·‖2 with ‖·‖. In every tracially complete C∗-algebra (M, X) we
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then have Z(M,X)(ϕ) = ZM(ϕ′). However, the behaviours of ϕ and ϕ′ can
be very different with respect to the definability properties. For example,
the set of projections is definable in the theory of C∗-algebras but not in the
theory of tracially complete C∗-algebras.8why? I don’t think

we have any coun-
terexamples to de-
finability.

Isn’t this just clas-
sification of projec-
tions?

S.TTP
5.2. Tracial Transfer Properties. Here we introduce a central notion for
this paper, which formalizes in a precise model-theoretic form the general
(and often observed) phenomenon of transfer of properties from the fibres
of a tracially complete C∗-algebra to the whole algebra.

Should the defini-
tion be restricted
to the factorial set-
ting?

def.ttf0 Definition 5.5. Suppose that M := (M, X) is a tracially complete C∗-
algebra. We say that M has the tracial transfer property if for every ∀∃-max
L‖·‖2-formula ψ and every tuple ā of elements ofM of the appropriate sort,

eq:TTPeq:TTP (5.9) ψM(ā) = sup
τ∈X

ψτ (πτ (ā)).

We say that M has the factorial tracial transfer property if for every ∀∃-max
L‖·‖2-formula ψ and every tuple ā of elements ofM of the appropriate sort,

eq:fTTPeq:fTTP (5.10) ψM(ā) = sup
τ∈∂eX

ψτ (πτ (ā)).

The name “factorial tracial transfer property” was chosen since when
(M, X) is a factorial tracially complete C∗-algebra, πτ [M]′′ is a factor when-
ever τ ∈ ∂eX. Therefore, the factorial tracial transfer property states that
in order to compute ψM(ā), it is enough to consider factorial von Neumann
algebra completions of M.

We will also consider the following equivariant version of the tracial trans-
fer property.Should we only

define this when
there is a uniform
bound on the
cardinality of the
orbits in the action
on the traces?

def.ttf Definition 5.6. Suppose that G is a countable group and M := (M, X, α)
is a G-tracially complete C∗-algebra such that Xα 6= ∅. Denote (M, Xα, α)
by Mα. We say that M has the tracial transfer property if for every ∀∃-max
L‖·‖2,G-formula ψ and every tuple ā of elements in M of the appropriate
sort,

eq:TTP-alphaeq:TTP-alpha (5.11) ψMα
(ā) = sup

τ∈Xα
ψτ (πτ (ā)).

We say that M has the factorial tracial transfer property if X = Xα and for
every ∀∃-max L‖·‖2,G-formula ψ and every tuple ā of elements in M of the
appropriate sort,

eq:fTTP-alphaeq:fTTP-alpha (5.12) ψMα

(ā) = sup
τ∈∂eX

ψτ (πτ (ā)).

We note that the tracial transfer property defines the following stronger
version of itself where the formulas are replaced with definable predicates (6)
of Definition 5.1). This is immediate since any ∀∃-max definable predicate
is uniformly approximated by ∀∃-max formulas.

8It is fortunately definable in the theory of factorial tracially complete C∗-algebras with
the tracial transfer property; see [18].



THE TRACIAL TRANSFER PROPERTY 21

Proposition 5.7. SupposeM := (M, X) is a tracially complete C∗-algebra
and ψ is an ∀∃-max definable predicate in the language L‖·‖2. If M has the
tracial transfer property and ā is a tuple of M of the appropriate sort, then

(5.13) ψM(ā) = sup
τ∈X

ψτ (πτ (ā)),

and if M has the factorial tracial transfer property and ā is a tuple in M of
the appropriate sort, then

(5.14) ψM(ā) = sup
τ∈∂eX

ψτ (πτ (ā)),

The analogous statement holds in the equivariant setting, replacing L‖·‖2
with L‖·‖2,G and (M, X) with (M, X, α) for a countable group G.

remark:limits Remark 5.8. It is of course possible to make sense of definitions of transfer
properties for classes of formulas which are larger than ∀∃-max formulas (or
predicates). One should note however that some requirements need to be
imposed, as otherwise the equality in (5.9) could fail for trivial reasons.
Indeed, let

ψ(x̄) = h(‖Q(x̄)‖22)

be a quantifer-free formula where Q is a ∗-polynomial and h : R → R is a
continuous function. Given a tracially complete C∗-algebra (M, X) and a
tuple ā in M of the appropriate sort, claiming that

h(‖Q(ā)‖22,X) = sup
τ∈X

h(‖Q(πτ (ā))‖22,τ ),

is the same as saying

h
(

sup
τ∈X
‖Q(ā)‖22,τ

)
= sup

τ∈X
h(‖Q(ā)‖22,τ ),

which will generally fail when h does not commute with sup, for instance
when h is strictly decreasing.

Nevertheless, the class of max-formulas turns out to be quite versatile and
rich, and it often suffices in applications, as shown in §8.

There is a possibility that for every L‖·‖2 or L‖·‖2,G formula ϕ, the eval-

uation ϕM is determined by the behaviour of the functions τ 7→ ψτ where
ψ ranges over a prescribed set of formulas that ‘control’ ϕ. Such Feferman–
Vaught-style result is conjectured and briefly discussed in §9.1.

TO DO: MOVE ELSEWHERE.
This subsec seems
out of place.5.3. Definability of τ+.

Def:Tau+ Definition 5.9. We expand our language L‖·‖2 by adding a relational sym-

bol τ+, interpreted as a 1-Lipshitz (i.e., contractive) predicate. If M :=
(M, X) is a tracially complete C∗-algebra, and b ∈ M, we then interpret
(τ+)M(b) as supτ∈X Re(τ(b)). This interpretation also applies to G-tracially
complete C∗-algebras.
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Lemma 5.10 shows that the predicate τ+ is quantifier-free definable in
the language L‖·‖2 (and therefore in L‖·‖2,G as well) on tracially complete
C∗-algebras.

lemma:Tau+Definable Lemma 5.10. The predicate τ+ is a quantifier-free max-definable predicate
in the theory of tracially complete C∗-algebras (and therefore in the theory
of G-tracially complete C∗-algebras for any countable group G).

Proof. We need to prove that for every N ∈ N there exists a sequence
{ϕn(x)}n∈N of quantifier-free max formulas in L‖·‖2 such that, for every
tracially complete C∗-algebra M := (M, X) and every b ∈ M of operator
norm smaller than N

(τ+)M(b) = lim
n→∞

(ϕn)M(b),

where the convergence is uniform.
Fix M and fix for a moment τ ∈ X. Since ‖b‖2,τ = τ(b∗b)1/2, for b ≥ 0

we have τ(b) = ‖b1/2‖22,τ . If b ∈Msa belongs to the N -ball, then b+N ≥ 0

and therefore τ(b) = ‖(b + N)1/2‖22,τ −N . It follows that for a self-adjoint
b we have

τ+(b) = ‖(b+N)1/2‖22,X −N.

By the Stone-Weierstrass Theorem, we can approximate the square root
function uniformly on [0, 2N ] by polynomials, thus yielding the desired se-
quence of formulas (ϕn(x))n∈N.

If b is not self-adjoint, then τ+(b) = τ+((b+b∗)/2), and together with the
previous paragraph this gives a definition of τ+(b). �

6. Measurable decomposition and selection
Section4

REWRITE
The factorial tracial transfer property will reduce to the tracial transfer

property (see Definition 5.5) via a direct integral argument. Roughly, for
a factorial tracially complete C∗-algebra M := (M, X) with X metrizable
and a trace τ ∈ X, there is a unique probability measure µτ on ∂eX with
barycentre τ , and there is a canonical identification

(6.1) πτ [M]′′ ∼=
∫ ⊕
∂eX

πσ[M]′′ dµτ (σ).

This will allow us to deduce information about all tracial von Neumann
algebra completions of M from the factorial ones.

The main theorems of this section are stated in §6.1. After recalling some
preliminaries on disintegration theory in §??, MORE HERE.

The proof of this theorem is entirely von Neumann-algebraic, and so is
the main result behind Theorem 6.2 (see Theorem 9.1 below).
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sec:convex.transfer
6.1. The reduction theorems. Using such a decomposition, we will prove
the following result, which immediately gives the equivalence of the factorial
tracial transfer property and the non-factorial version.

P.convex.transfer.0 Theorem 6.1. Let ϕ(x̄) be an ∀∃-convex L‖·‖2-formula or an ∀∃-convex
definable predicate. Let M := (M, X) be a factorial tracially complete C∗-
algebra such that M is ‖ · ‖2,X-separable . Then, for every tuple ā in M of
the appropriate sort,

(6.2) sup
σ∈X

ϕσ(πσ(ā)) = sup
σ∈∂eX

ϕσ(πσ(ā)).

In particular, M has the tracial transfer property if and only if M has the
factorial tracial transfer property

The above theorem follows immediately from the equivariant version be-
low by taking G to be the trivial group. Note that although the action of
G on X is required to be trivial, the action of G on M could be highly
non-trivial: e.g., ifM is the hyperfinite II1 factor, all groups admit an outer
action on M.

P.convex.transfer Theorem 6.2. Let G be a countable group and let ϕ(x̄) be an ∀∃-convex
L‖·‖2,G-formula or an ∀∃-convex definable predicate. Let M := (M, X, α) be
a factorial G-tracially complete C∗-algebra such that M is ‖ · ‖2,X-separable
and G acts trivially on X. Then, for every tuple ā in M of the appropriate
sort,

(6.3) sup
σ∈X

ϕσ(πσ(ā)) = sup
σ∈∂eX

ϕσ(πσ(ā)).

In particular, M has the tracial transfer property if and only if M has the
factorial tracial transfer property.

We only prove Theorem 6.2 as Theorem 6.1 then follows immediately.
The rest of this section is devoted to the proof of Theorem 6.2.

sec:disintegration
6.2. Disintegration. This subsection recalls some elements of the disin-
tegration theory of finite von Neumann algebras and representations (see
[34, §IV.8], [4, §III.1.6], [24, §14], or [32, §1.1.4] for a quick overview). The
main tool going forward will be the selection result stated as Proposition 6.3
below, which will be used (via Lemma 6.6) in proving the existential case
of Theorem 6.2 (i.e., the case when ψ is an ∃-convex L‖·‖2,G-formula or
definable predicate).

Let us set the notation. Fix a separable C∗-algebra A, a countable dense
subset {an}n∈N of A and a positive Radon measure µ on the state space
S(A) with support contained in some Borel subset T ⊆ S(A). For each
σ ∈ T , let (πσ, Hσ, ησ) be the cyclic representation obtained from the GNS-
construction. The association σ ∈ T → Hσ produces a measurable field of
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Hilbert spaces {Hσ}σ∈T , where ξ = (ξσ)σ∈T in
∏
σ∈T Hσ is a measurable

vector field if and only if the maps

σ 7→ 〈πσ(an)ησ, ξσ〉
are µ-measurable for every n ∈ N. In addition, the map σ 7→ ‖ξσ‖ is

µ-measurable. The Hilbert space Hµ =
∫ ⊕
T Hσ dµ(σ) is the space of all

measurable vector fields ξ = (ξσ)σ∈T such that

‖ξ‖ =
(∫ ⊕

T
‖ξσ‖2dµ(σ)

)1/2
<∞.

Vectors in Hµ are written as
∫ ⊕
T ξσ dµ(σ). We let

∫ ⊕
T πσ dµ(σ) denote the

direct integral representation obtained from the measurable field of repre-
sentations {πσ}σ∈T .

An operator a ∈ B(Hµ) is called decomposable if there is a function
σ 7→ aσ such that aσ ∈ B(Hσ) for almost all σ, and for every measurable

vector field ξ :=
∫ ⊕
T ξσdµ(σ) in Hµ the image a(ξ) =

∫ ⊕
T aσ(ξσ)dµ(σ) is a

measurable vector field. If a is decomposable and there is an L∞-scalar
function σ 7→ λσ such that aσ = λσ1Hσ for almost all σ, then a is called
diagonalizable. An operator in B(Hµ) is decomposable if and only if it
commutes with all diagonalizable operators ([34, Corollary IV.8.16])

Given a ‖ · ‖2,X -separable factorial tracially complete C∗-algebra (M, X),
the measure used to disintegrate a representation πτ for τ ∈ X will come
from the decomposition of τ as an integral of extremal tracial states. If
T (M) is weak∗-compact and metrizable and X ⊆ T (M) is a closed face,
then for every τ ∈ X there exists a unique probability measure µ on ∂eX such
that f(τ) =

∫
∂eX

f(σ) dµ(σ) for every continuous affine function f : X → R
(this is the second part of [34, Theorem IV.6.15]). Such µ is called the
representing measure of τ on X, and τ is called the barycenter of µ on
X. By a result of Choquet, the extreme boundary of a metrizable Choquet
simplex is a Gδ subset (this is the first part of [34, Theorem IV.6.15]), and
therefore a Polish space with respect to the subspace topology.

The last sentence of the following result is known among the experts, but
it does not seem to appear explicitly in the existing literature.

P.disintegration Proposition 6.3. Suppose that M = (M, X) is a factorial tracially com-
plete C∗-algebra which is ‖ · ‖2,X-separable. Suppose that τ ∈ X. Then the
representing measure µ satisfies the following.

1.P.disintegration (1) πτ is spatially equivalent to
∫ ⊕
∂eX

πσ dµ(σ).

2.P.disintegration (2) πτ [M]′′ ∼=
∫ ⊕
∂eX

πσ[M]′′ dµ(σ).

In particular πτ [M]′′ can be disintegrated as a direct integral of II1 factors

and its elements can be identified with decomposable operators in
∫ ⊕
∂eX

B(Hσ) dµ(σ).

Proof. In order to prepare the grounds for the disintegration theory, let A
be a (norm-)separable subalgebra of (M, ‖ · ‖) which is dense in the ‖ · ‖2,X -
norm. Note that by [6, Corollary 2.23], with the set X(A) = {τ � A : τ ∈
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X} ⊆ T (A), we have an isomorphism between (A
X(A)

, X(A)) and (M, X).
In what follows we shall thus identify states in X with their restrictions to
A.

The first key point in the proof of Proposition 6.3 is given by [1, Lemma 4.1]
(see also [5, Lemma 3.4] for an alternative presentation of this result closer
to our setup). By these results, if τ ∈ X and µ is a measure supported
on ∂eX representing τ , then, by uniqueness of the GNS-representation, πτ
is spatially equivalent to a subrepresentation of

∫ ⊕
∂eX

πσ dµ(σ), and the ∗-

homomorphism on πτ [A]

πτ (a) 7→
∫ ⊕
∂eX

πσ(a) dµ(σ)

extends to an injective and normal ∗-homomorphism Φ: πτ [A]′′ →
∫ ⊕
∂eX

πσ[A]′′ dµ(σ).

By [34, Theorem IV.8.31], the representation πτ is unitarily equivalent to∫ ⊕
∂eX

πσ dµ(σ) if and only if the measure µ is orthogonal in the sense of [34,

Definition IV.6.20]. A practical equivalent formulation of µ being orthogonal
is taken from [34, Theorem IV.6.19]. Consider the ultraweakly continuous
linear positive map θ : L∞(∂eX,µ) → πτ [A]′ such that θ(1) = 1 and such
that, for f ∈ L∞(∂eX,µ), satisfies

eq:traceeq:trace (6.4) τ(θ(f)πτ (a)) =

∫ ⊕
∂eX

f(σ)σ(a) dµ(σ).

Such a map exists and it is unique, by [34, Proposition IV.6.18]. The measure
µ is orthogonal if and only if θ is multiplicative. The fact that in the tracial
setting θ is a ∗-homomorphism is a consequence [29, Lemma 10], where it is
proved that θ is an isomorphism between L∞(∂eX,µ) and Z(πτ [A]′′). We

can thus conclude that πτ and
∫ ⊕
∂eX

πσ dµ(σ) are spatially equivalent repre-

sentations of A. Since the spatial equivalence between πτ and
∫ ⊕
∂eX

πσ dµ(σ)

from [34, Theorem IV.8.31] is given by
∫ ⊕
∂eX

πσ(a)ησ 7→ πτ (a)ητ for all

a ∈ A, there is a unitary U :
∫ ⊕
∂eX

Hσ → Hτ such that UaU∗ = Φ(a) for

all a ∈ πτ [A]′′. This, along with equation (6.4), entails that Φ[Z(πτ [A]′′)]

corresponds to the set of diagonalizable operators in B(
∫ ⊕
∂eX

Hσ), which in

turn implies that
∫ ⊕
∂eX

πσ[A]′′ dµ(σ) is equal to the image of πτ [A]′′ via Φ

(see e.g. [12, Lemma 8.4.1]). Therefore Φ is surjective.
Since A is ‖ · ‖2,X -dense in M, we have πσ[A]′′ = πσ[M]′′ for all σ ∈ X

and therefore Ad(U) can be extended to an isomorphism (again denoted Φ)

Φ: πτ [M]′′ →
∫ ⊕
∂eX

πσ[M]′′ dµ(σ). �

In [29, Theorem 11] it is shown that if (M, X) is a continuous W∗-bundle
and τ ∈ ∂eX then πτ [M] = πτ [M]′′. We do not know whether this conclu-
sion holds in every factorial tracially complete C∗-algebra for every τ ∈ ∂eX.
Note however that if τ is faithful then πτ [M] is a von Neumann algebra if
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and only if M is, hence the conclusion can fail for non-extremal tracial
states.

If G is a discrete group acting on a tracially complete C∗-algebra (M, X)
via an action α such that X = Xα, and τ ∈ X, then the isomorphism
Φ from the previous proof acts equivariantly between (πτ [M], τ, ατ ) and

(
∫ ⊕
∂eX

πσ[M]′′, τ,
∫ ⊕
∂eX

ασ). Indeed, for every a ∈M and g ∈ G we have

Φ(ατg(πτ (a))) = Φ(πτ (αg(a))) =

∫ ⊕
∂eX

πσ(αg(a)) dµ(σ)

=

∫ ⊕
∂eX

ασg (πσ(a)) dµ(σ)

The following then immediately follows from Proposition 6.3.

P.disintegration.dynamic Proposition 6.4. Suppose that G is a discrete countable group and (M, X, α)
is a factorial G-tracially complete C∗-algebra which is ‖ · ‖2,X-separable and
such that X = Xα. Suppose that τ ∈ X. Then the representing measure
µ = µτ satisfies the following.

(1) πτ is unitarily equivalent to
∫ ⊕
∂eX

πσ dµ(σ).

(2) πτ [M]′′ ∼=
∫ ⊕
∂eX

πσ[M]′′ dµ(σ).

(3) ατg is conjugate to
∫ ⊕
∂eX

ασg dµ(σ), for all g ∈ G, via the isomorphism

mapping πτ (a) 7→
∫ ⊕
∂eX

πσ(a) dµ(σ) for all a ∈M.

In particular πτ [M]′′ can be disintegrated as a direct integral of II1 factors
of which G is acting and the elements of πτ [M]′′ can be identified with

decomposable operators in
∫ ⊕
∂eX

B(Hσ) dµ(σ). �

With Propositions 6.3 and 6.4 under our belt, we now turn to the other
component of the proofs of this section, measurable selection. Let (M, X, α)
be a separable factorial G-tracially complete C∗-algebra as in the assump-
tions of Theorem 6.2. Consider M with the topology induced by the norm
‖ · ‖2,X and X as a subspace of the dual of M with the weak∗-topology.
With Mk denoting the ball of radius k > 0 of M with respect to the norm
topology, both Mk and X are Polish spaces, namely each one is separable
and admits a compatible complete metric (for Mk the metric is given by
the ‖ · ‖2,X -norm and for X see [25, §1.3]).

Because of the requirement X = Xα, proving Theorem 6.2 under the
assumption that the action α is trivial on X is nearly identical to the general
case. Therefore, in order to lighten the notation, we will drop α and provide
only proofs for tracially complete C∗-algebras for the remaining part of this
section.

lem:Continuity Lemma 6.5. Suppose that ϕ(x̄, ȳ) is an L‖·‖2-formula, that (M, X) is a
tracially complete C∗-algebra and that ā is a tuple of the same sort as x̄ in
M.
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2.L.Evaluation (1) If ϕ is quantifier-free, then the evaluation function9 Evϕ,ā : X ×
Mn → R

Evϕ,ā(τ, b̄) 7→ ϕτ (πτ (ā, b̄))

is jointly continuous with respect to the induced weak∗-topology on
X and the operator norm topology of M.

1.L.Evaluation (2) If M is in addition ‖ · ‖2,X-separable, then the evaluation function
of a not necessarily quantifier-free formula is Borel-measurable.

Proof. (1) If ϕ(x̄, ȳ) is atomic, say ‖Q(x̄, ȳ)‖2 for a ∗-polynomial Q(x̄, ȳ),
then the map Evϕ,ā is the composition of the continuous functions ȳ 7→
Q(ā, ȳ) and (τ, z) 7→ ‖πτ (z)‖2,τ .

Suppose that ϕ(x̄, ȳ) = f(ψ1(x̄, ȳ), . . . , ψn(x̄, ȳ)) for a continuous function
f and ψj , for j ≤ n, and that the evaluation function Evψj ,ā is continuous for
each ψj . Then Evϕ,ā = f(Evψ1,ā, . . . ,Evψn,ā) is continuous, as a composition
of continuous functions.

(2) This is proved by induction on the complexity of ϕ. The only non-
trivial cases are when

ϕ(x̄, ȳ) = inf
‖z‖≤N

ψ(x̄, ȳ, z) or ϕ(x̄, ȳ) = sup
‖z‖≤N

ψ(x̄, ȳ, z),

for some N ∈ N. Fix a countable ‖ · ‖2,X -dense subset {an}n∈N in the
N -ball of M. If ψ(x̄, ȳ, z) is such that the evaluation function Evψ,ā is
Borel-measurable, then for all b̄ in M of the appropriate sort, we have

sup
‖z‖≤N

ψτ (πτ (ā, b̄), z) = sup
n∈N

ψτ (πτ (ā, b̄, an)),

inf
‖z‖≤N

ψτ (πτ (ā, b̄), z) = inf
n∈N

ψτ (πτ (ā, b̄, an)).

Thus the evaluations of sup‖z‖≤N ψ(x̄, ȳ, z) and inf‖z‖≤N ψ(x̄, ȳ, z) are point-
wise limits of sequences of Borel functions, and therefore Borel-measurable
themselves. �

L.disintegration Lemma 6.6. Suppose that (M, X) is a factorial tracially complete C∗-algebra
such that M is ‖ · ‖2,X-separable. Suppose that n ≥ 1, k ≥ 1, and Z is a
Borel subset of ∂eX ×Mn

k and let

Z̃ := {(σ, πσ(c̄)) : (σ, c̄) ∈ Z}.

Suppose in addition that τ ∈ X and that µ is the representing measure for
τ . Then there exists

b̄ =

∫ ⊕
∂eX

b̄σ dµ(σ) ∈ (πτ [M]′′)nk ,

such that (σ, b̄σ) ∈ Z̃ for µ-almost all σ ∈ ∂eX for which the section Zσ :=
{ā : (σ, ā) ∈ Z} is nonempty

9See Definition 4.1 for the notation ϕτ (πτ (ā, b̄)).
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Proof. Let Y ⊆ ∂eX be the set of all σ ∈ ∂eX for which Zσ is nonempty, and
let π1 : Z → Y be the first coordinate projection. By [34, Theorem A.16],
there is a µ-measurable cross-section σ 7→ (σ, f(σ)) from Y into Z. In
particular, the map σ 7→ f(σ) is a µ-measurable function from Y into Mn

k ,
which we extend to ∂eX by setting f(σ) to be the n-sequence constantly
equal to 0, for all σ ∈ ∂eX\Y . By µ-measurability of f and the fact that the
operators in its range are uniformly bounded in the operator norm, it follows
that the function σ 7→ b̄σ := πσ(f(σ)) defines a decomposable operator

b̄ =

∫ ⊕
∂eX

b̄σ dµ(σ) ∈
(∫ ⊕

∂eX
πσ[M]′′ dµ(σ)

)n
k

.

Finally, Proposition 6.4 implies that b̄ ∈ (πτ [M]′′)nk . �

We are finally ready to prove the main result of this section.

Proof of Theorem 6.2. Suppose that G is a discrete, countable group, M :=
(M, X, α) is a separable factorial G-tracially complete C∗-algebra, the in-
duced action of G on X is trivial and ϕ(x̄) is an ∀∃-convex L‖·‖2,G-formula.
Clearly

sup
σ∈X

ϕσ(πσ(ā)) ≥ sup
σ∈∂eX

ϕσ(πσ(ā))

and it suffices to prove the reverse inequality.
Let r ∈ R be such that

sup
τ∈∂eX

ϕσ(πσ(ā)) < r.

We need to prove that ϕτ (πτ (ā)) < r for all τ ∈ X.
Fix τ ∈ X and let µ be its representing measure supported on ∂eX. Let

us first assume that ϕ(x̄) = ‖Q(x̄)‖22 for some ∗-polynomial Q(x̄). We have

ϕτ (πτ (ā)) = ‖Q(ā)‖22,τ =

∫
∂eX
‖Q(ā)‖22,σ dµ(σ) <

∫
∂eX

r dµ(σ) = r.

Suppose now that ϕ(x̄) is a quantifier-free convex formula, hence there
are m ≥ 1, some G-∗-polynomials Q1(x̄), . . . , Qm(x̄) and a convex function
g : Rm → R such that

ϕ(x̄) = g(‖Q1(x̄)‖22, . . . , ‖Qm(x̄)‖22).

Jensen’s inequality allows us to settle this case as follows

ϕτ (πτ (ā)) = g

(∫
∂eX
‖Q1(ā)‖22,σ dµ(σ), . . . ,

∫
∂eX
‖Qm(ā)‖22,σ dµ(σ)

)
≤
∫
∂eX

g(‖Q1(ā)‖22,σ, . . . , ‖Qm(ā)‖22,σ) dµ(σ)

=

∫
∂eX

ϕσ(πσ(ā)) dµ(σ) < r.

Consider the case when ϕ(x̄) = inf‖ȳ‖≤1 ψ(x̄, ȳ), for a quantifier-free, convex,
formula ψ and an n-tuple of variables ȳ.
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The function (b̄, σ) 7→ ϕσ(πσ(ā, b̄)) is Borel-measurable by Lemma 6.5.
Therefore the preimage of [0, r) under this function,

{(σ, b̄) ∈ X ×Mm
k : ϕσ(πσ(ā, b̄)) < r},

is also Borel. By Lemma 6.6 there exists b̄ =
∫ ⊕
∂eX

bσ dµ(σ) ∈ (πτ [M]′′)n1
such that ψσ(πσ(ā), b̄σ) < r for a µ-co-null set of σ ∈ ∂eX. Since ψ(x̄, ȳ) is
quantifier-free, by the quantifier-free case proved above we obtain ψτ (πτ (ā), b̄) <
r.

Finally, suppose that ϕ(x̄) = sup‖ȳ‖≤1 inf‖z̄‖≤1 ψ(x̄, ȳ, z̄), for ψ quantifier-

free and convex. For every tuple b̄ of the appropriate sort in M1 we have
that

sup
σ∈∂eX

inf
‖z̄‖≤1

ψσ(πσ(ā, b̄, z̄)) < r.

It follows from the previous case that, for every tuple b̄ of the appropriate
sort supσ∈X inf‖z̄‖≤1 ψ

σ(πσ(ā, b̄, z̄)) < r. By ‖ · ‖2,σ-density of πσ[M] in
πσ[M]′′, we can conclude that supσ∈X ϕ

σ(πσ(ā)) < r, as desired. �

6.3. Theories of fibres and limiting examples. We conclude this sec-
tion with a few limiting examples.

6.3.1. Theories of fibres. Following [16, §2.1.1, 3.1.1], we identify the theory
of a tracial von Neumann algebra with a bounded linear functional on the
real Banach algebra WL‖·‖2 of L‖·‖2-sentences. This equips the set of all

theories with the weak∗-topology, known as the logic topology. The following
is a consequence of the second part of Lemma 6.5.

C.Borel Corollary 6.7. If A is a tracial, unital, separable C∗-algebra and τ ∈ T (A),
then the evaluation of the theory of πτ [A]′′, as a function from T (A) into
W∗L‖·‖2

,

τ 7→ Th(πτ [A]′′)

is Borel-measurable. �

The conclusion of Corollary 6.7 is optimal, as the following example shows
that even the evaluation of ∃-formulas is not necessarily continuous (it is not
difficult to show that it is lower semicontinuous).

We provide a C∗-algebra A such that T (A) is homeomorphic to [0, 1] and
an ∃-formula ϕ such that the evaluation of ϕ on T (A) is not continuous.
Consider the dimension drop algebra

A := {f : [0, 1]→M2(C) : f(0) ∈ C · 12}.

Let ϕ = inf‖x‖≤1 ‖x∗ − x‖2 + ‖x2 − x‖2 + |1/2 − ‖x‖2|. Then ϕτ = 0 for
every τ ∈ (0, 1], since in this case πτ [A]′′ ∼= M2(C) contains a projection of
trace 1/2. On the other hand ϕC > 0, since the contrary would imply the
existence of a non-trivial projection (this is the case since in C the norm
‖ · ‖2 coincides with the uniform norm).
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ss.failure
6.3.2. The failure of transfer. An obvious example of a sentence that does
not transfer from factorial tracial fibers (Mσ, σ) to the tracial von Neu-

mann algebra M =
∫ ⊕Mσ dµ(σ), with the (non-factorial) tracial state

τ =
∫ ⊕

σ dµ(σ) is the sentence that axiomatizes factorial tracial von Neu-
mann algebras ([17, Proposition 3.4]). In the usual language of tracial von
Neumann algebras (of which our L‖·‖2 from §?? is a reduct, see §A.2), the

sentence is (there is a typo in the definition of ξ(a) in [17] where tr2(a)

should be replaced with tr(a)tr(a))10

eq:factoreq:factor (6.5) sup
‖x‖≤1

sup
‖y‖≤1

√
‖x‖22 − tr(x)tr(x) −̇ ‖[x, y]‖2.

Here tr is interpreted as the tracial state. The class of tracial von Neumann
algebras (M, τ) is axiomatizable in L‖·‖2 as the class of those structures

for which the predicate τ+ from Definition 5.9 is linear (see Theorem A.2).
Within the class of tracial von Neumann algebras, seen as L‖·‖2-structures,
the predicate tr is definable. On the positive elements it can be recovered
as tr(x∗x) = ‖(x∗x)1/2‖22 = τ+(x∗x). Hence in this class the formula (6.5)
can be rephrased as

sup
‖x‖≤1

sup
‖y‖≤1

(
‖x∗x‖22 − ‖(x∗x)1/2‖42

)
−̇ ‖[x∗x, y]‖22.

One reason why this sentence fails to transfer from the fibers toM is that its
quantifier-free core is not convex. A more subtle reason is that the definition
of tr does not respect the disintegration. In fact, when applied fiberwise in∫ ⊕Mσ dµ(σ), it results in the center-valued trace (assumingMσ is a factor
for µ-a.e. σ; in general it will be ‘diagonalizable operator-valued’) instead
of the scalar-valued τ .

7. Proof of Theorem B

CUT AND PASTE FROM SECTION 5.

7.1. Main transfer results. We prove that CPoU (§??) and the tracial
transfer property (§5.2) are two sides of the same coin.

thm:MainThm.0 Theorem 7.1. Suppose that (M, X) is a factorial tracially complete C∗-
algebra. Then the following are equivalent.

item1:mt (1) (M, X) has the Tracial Transfer Property.
item2:mt (2) (M, X) has CPoU.

If moreover M is ‖ · ‖2,X-separable, the above conditions are equivalent to

item3:mt (3) (M, X) has the Factorial Tracial Transfer Property.

Theorem 7.1 is a special case of the following.

10The notation x−̇y is an abbreviation for max{0, x− y}.
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thm:MainThm Theorem 7.2. Let G be a discrete countable group and let (M, X, α) be a
factorial G-tracially complete C∗-algebra such that the action induced by α
on X factors through a finite group action. Then the following are equiva-
lent.

item1:mt-alpha (1) (M, X, α) has the Tracial Transfer Property.
item2:mt-alpha (2) (M, X, α) has α-CPoU.

Moreover, if the action induced by α on X is trivial and M is ‖ · ‖2,X-
separable, the above conditions are equivalent to

item3:mt-alpha (3) (M, X, α) has the Factorial Tracial Transfer Property.

Proofs of Theorem 7.1 and Theorem 7.2. The implication (2)⇒ (1) is proved
in Section ??, while (1) ⇒ (2) is proved in Section ??. Finally, in Section
6 we show that condition (3) is equivalent to conditions (1)–(2) when the
action induced by α on X is trivial and M is ‖ · ‖2,X -separable. �

In case when the action induced by α on X is nontrivial, the Tracial
Transfer Property may fail, but Corollary 7.3 below is a ‘poor man’s ver-
sion’ of the Tracial Transfer Property that suffices for some applications. In
it we need to restrict ourselves to a certain subclass of max-formulas. In
particular, we say that a qunatifier-free max-formula

ϕ(x̄) = max{h1(‖Q1(x̄)‖22), . . . , hk(‖Qk(x̄)‖22)},
is subhomogeneous if, on top of all conditions required in item 2 of Definition
5.1, we also have that hj(Cz) ≤ Chj(z) for all C ≥ 0, z ∈ R and j ≤ k.
Subhomogeneous ∃-max, ∀∃-max and max-formulas are defined following the
pattern of Definition 5.1.

cor:extremeTraces Corollary 7.3. Let G be a discrete countable group and let M := (M, X, α)
be a factorial G-tracially complete C∗-algebra such that the action induced by
α on X factors through a finite group action. Suppose that (M, X, α) has α-
CPoU. Then there is a constant C ∈ N such that for every subhomogeneous
∀∃-max L‖·‖2,G-formula ψ, and any tuple ā from M

ψM(ā) ≤ C sup
τ∈Xα

ψτ (πτ (ā)).

Proof. This follows from Theorem 7.2 and Proposition 2.5 proved below. �

cor:Applications Corollary 7.4. If A is a Z-stable separable C∗-algebra for which T (A) is

nonempty and compact, then (A
T (A)

, T (A)) has the Tracial Transfer Prop-
erty.

Proof. Use the fact that Z-stability of A implies that A has CPoU (this was
proved with the additional assumption of nuclearity in [8], and in general in
[6]), in combination with Theorem 7.1. �

For a type t(x̄) over a tracially complete C∗-algebra (M, X) and τ ∈ X
let tτ (x̄) be the type over πτ [M ]′′ obtained by replacing every parameter
a with πτ (a). The following is another consequence of Theorem 7.1 (see
Definition 5.3).
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cor.types Corollary 7.5. Suppose that t(x̄) is a countable quantifier-free max-type in
L‖·‖2. If a factorial tracially complete C∗-algebra M := (M, X) has CPoU,
then the following are equivalent.

item:type1 (1) t is approximately satisfiable in M.
4.cor.types (2) t is satisfied in some (every) ultrapower MU associated with a free

ultrafilter U on N.
item:type3 (3) tτ is approximately satisfiable in (πτ [M]′′, τ) for every τ ∈ X.

If moreover M is ‖ · ‖2,X-separable, the conditions above are equivalent to

item:type4 (4) tτ is approximately satisfiable in (πτ [M]′′, τ) for every τ ∈ ∂eX.

Proof. Fix a finite number of quantifier-free max-formulas ϕ1(x̄), . . . , ϕk(x̄)
in t(x̄). Set

ψ := inf
‖x̄‖≤1

max{ϕ1(x̄), . . . , ϕk(x̄)}.

The formula ψ is an ∃-max formula, hence, by Theorem 7.1, if M = (M, X)
is a factorial tracially complete C∗-algebra with CPoU, we have that

eq:TTP--eq:TTP-- (7.1) ψM = sup
τ∈X

ψτ .

(1) is equivalent to saying that the left-hand side of the equation is zero,
regardless of the finite set of formulas in t(x̄) that we started with. Similarly,
(3) corresponds to the right-hand side being zero. The equality (7.1) thus
grants the equivalence between (1) and (3). An analogous argument provides
the equivalence between (1) and (4).

(2) is equivalent to (1) by  Loś’s Theorem and countable saturation of
MU . �

The statement of Corollary 7.5 feels incomplete. If a type t is satisfied
in M by ā, then tτ is satisfied in πτ [M ]′′ by πτ (a) for all τ ∈ X. It is
however not clear whether if each tτ is satisfied in πτ [M ]′′ then t is satisfied
in M, assuming CPoU (otherwise there are easy counterexamples). One
instance of this question is the case when t(x) consists of a single formula,
max(‖x−x∗‖,‖u−exp(ix)‖2). If u is a unitary in M, then for every τ there is
a such that 0 ≤ a ≤ 2π and πτ (u) = exp(ia). It is however not known, even
assuming that M has CPoU, whether every unitary in M has a logarithm.

Corollary 7.5 can be generalized to the dynamical setting by an analogous
proof, using Theorem 7.2.

Corollary 7.6. Suppose that t(x) is a countable quantifier-free max-type in
L‖·‖2,G. If a factorial G-tracially complete C∗-algebra M := (M, X, α) has
α-CPoU, then, setting Mα = (M, Xα, α), the following are equivalent.

(1) t is approximately satisfiable in Mα.
(2) t is satisfied in some (every) ultrapower (Mα)U associated with a free

ultrafilter U on N.
(3) tτ is approximately satisfiable in (πτ [M]′′, τ) for every τ ∈ Xα.
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Moreover, if X = Xα is trivial and M is ‖ · ‖2,X-separable, the above con-
ditions are equivalent to

(4) tτ is approximately satisfiable in (πτ [M]′′, τ) for every τ ∈ ∂eX.

As promised in §??, we state and prove the (well-known) fact that the
choice of the ultrafilter and (modulo mild restrictions) the choice of the
‖ · ‖2-separable set S do not affect the existence of complemented partitions
of unity.

T.CPoUs Proposition 7.7. For any tracially complete C∗-algebra M = (M, X), for
every collection a1, . . . an ∈M+, every δ > 0 such that

sup
τ∈X

min{τ(a1), . . . , τ(an)} < δ,

and any free ultrafilter U on N, the following are equivalent.

1.CPoU (1) For every F b M there are orthogonal projections p1, . . . , pn in
MUX ∩ F ′ such that

1.a.CPoU (a)
∑n

i=1 pi = 1 and
1.b.CPoU (b) τ(piai) ≤ δτ(pi) for all i ≤ n and τ ∈ XU .
1.5.CPoU (2) For every F b M and every ε > 0 there are positive contractions

e1, . . . , en in M such that
(a)

∑n
i=1 ei = 1,

(b) maxi≤n ‖ei − e2
i ‖2 < ε.

(c) maxb∈F,i≤n ‖[b, ei]‖2 < ε,
1.5.CPoU.d (d) τ(eiai) ≤ δτ(ei) + ε for all i ≤ n and τ ∈ X.

2.CPoU (3) For every ‖ · ‖2,XU -separable S ⊆ MUX there are orthogonal projec-

tions p1, . . . , pn in MUX ∩ S′ that satisfy (1a) and (1b).

The assertions (1) and (3) are also equivalent to the analogous statements
obtained by replacing U with another free ultrafilter on N.

Proof. Clearly (3) implies (1), and (2) implies (1) by countable saturation
of MUX .

We prove that (1) implies (3). Fix a ‖·‖2,XU -separable S ⊆MUX and, using
the formula ϕp whose zero-set is the set of projections (see Example 5.4),
and Definition 5.9 for τ+, let

ψ(x1, . . . , xn) = max
{

max
j≤n

ϕp(xj),max
j≤n

τ+(xjaj − δxj),
∥∥∥1−

∑
j≤n

xj

∥∥∥2

2

}
.

By Lemma 5.10, the predicate ψ is quantifier-free max-definable. Con-
sider the type tS(x1, . . . , xn) consisting of ψ together with the conditions
‖[xi, b]‖2 = 0 where b ranges over a countable dense subset of S. We show
that this type is approximately satisfiable inMUX . By the countable satura-

tion of MU = (MUX ,ΣUX) (see Theorem 4.5), this implies that tS is realized
in MUX , hence (3) follows.

Let t0 be a finite subset of tS and let b1, . . . , bm be the elements of S
mentioned in the formulas of t0. Consider the following formulas in ȳ =
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(y1, . . . , ym) and x̄

ηm(x̄, ȳ) := max{ψ(x̄), max
i≤m,j≤n

‖[yi, xj ]‖22},

θm(ȳ) := inf
‖x̄‖≤1

ηm(x̄, ȳ).

For every ā in M of the same sort as b̄ := (b1, . . . , bm), by (1) we have

θM
U

m (ā) = 0. By  Loś’s Theorem, θMm(ā) = 0. Since ā was arbitrary, we have

(sup‖ȳ‖≤1 θm(y1, . . . , ym))M = 0. Using  Loś again, this implies (sup‖ȳ‖≤1 θm(y1, . . . , ym))M
U

=

0, and thus θm(b1, . . . , bm)M
U

= 0. Since b̄ was arbitrary, this implies that
t0 is approximately satisfiable in MUX and therefore, by repeating this ar-
gument for every finite subset of tS , that tS is approximately satisfiable in
MUX .

To prove that (1) implies (2), first note that the proof that (1) implies (3)
shows that each of these assertions is equivalent to having

( sup
‖ȳ‖≤1

θm(y1, . . . , ym))M = ( sup
‖ȳ‖≤1

inf
‖x̄‖≤1

ηm(x̄, ȳ))M = 0

for all m ≥ 1.
It suffices to consider the case when F ∪ {a1, . . . , an} is a subset of M1.

Let ε and F = {c1, . . . , cm} be as in (2). Let ε′ := ε/(4n). By (1) we
have (inf‖x̄‖≤1 ηm(x̄, c̄))M = 0. Fix ē′ = (e′1, . . . , e

′
n) in M1 which satisfies

ηm(ē′, c̄) < ε′. Then e′′i := (e′i + (e′i)
∗)/2 are self-adjoint and satisfy ‖e′′i −

e′i‖2 < ε′ and ‖e′′i − (e′′i )
2‖2 < 4ε′. Let ei := (e′′i )+, for i < n, and en := 1−∑

i<n ei. Easy computations show that for all i and j we have ‖ei−e′i‖2 < ε,

‖ei − e2
i ‖2 ≤ ‖e′′i − (e′′i )

2‖2 < ε, (using ‖cj‖ ≤ 1) ‖[ei, cj ]‖2 < ε, and (using
‖ai‖ ≤ 1) that τ+(eiai − ei) < ε, which is equivalent to (2d). Therefore
e1, . . . , en are as required.

Since (2) depends only on the theory of M, replacing U with another free
ultrafilter V in (1) or (3) results in equivalent statements. �

In model-theoretic terms, the proof that (1) implies (2) in Proposition 7.7
relies on the fact that the set of partitions of unity into n positive contrac-
tions is definable in the theory of tracially complete C∗-algebras. Notably,
the set of partitions of unity into n projections (even with n = 2) is not
definable in the theory of tracially complete C∗-algebras, but it is definable
in the theory of tracially complete C∗-algebras with CPoU ([18]).

The dynamic version of Proposition 7.7 and its proof are analogous, and
therefore omitted.

FROM OLD DRAFT.

In this section we prove (1)⇒ (2) of Theorem 7.2, that the Tracial Transfer
Property implies (α-)CPoU.

Proof of Theorem 7.2 (1) ⇒ (2). Suppose that M = (M, X, α) as in the
statement of the Theorem satisfies the Tracial Transfer Property. Let a1, . . . , an ∈
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M+ and δ > 0 be such that

sup
τ∈Xα

min{τ(a1), . . . τ(an)} < δ.

By  Loś’s Theorem and countable saturation ofMUX (for some free ultrafilter
U on N), it suffices to prove that for every finite F ⊂M, every finite K ⊆ G
and any ε > 0, there exist p1, . . . , pn in the unit ball of M such that for all
i ≤ n, b ∈ F and g ∈ K (with the abbreviation τ+ justified in Lemma 5.10):

eq:CPoUFormula0 (1) ‖[pi, b]‖2,X < ε,
(2) ‖pi − p∗i ‖2,X < ε,
(3) ‖pi − p2

i ‖2,X < ε,
(4) ‖p1 + · · ·+ pk − 1‖2,X < ε,
(5) ‖αg(pi)− pi‖2,X < ε,
(6) τ+(piai − δpi) < ε.eq:CPoUFormula2

For ` = |F |, We define a quantifier-free formula in x̄ = (x1, . . . , xn), ȳ =
(y1, . . . , y`) and z̄ = (z1, . . . , zn) as follows

ϕ(x̄, ȳ, z̄) := max
i≤n,j≤`,g∈K

{
‖[xi, yj ]‖22, ‖xi − x∗i ‖22, ‖xi − x2

i ‖22,

‖x1 + . . . ,+xk − 1‖22, ‖αg(xi)− xi‖22, τ+(xizi − δxi)
}

and let ψ(ȳ, z̄) := inf‖x̄‖≤1 ϕ(x̄, ȳ, z̄). Then, with F enumerated as b̄ =

(b1, . . . , b`), we have ψ(b̄, ā) = 0 if and only if for some n-tuple p̄ the condi-
tions (1)–(6) are satisfied.

Lemma 5.10 implies that ϕ is quantifier-free max-definable predicate, and
therefore ψ is ∃-max definable predicate.

For each τ ∈ Xα, by hypothesis there is k ≤ n such that τ(ak) < δ. Thus
setting pτi = 1 if i = k and zero otherwise, we obtain

ϕτ (pτ1 , . . . , p
τ
n, πτ (b̄, ā)) = 0.

This shows that ψτ (πτ (b̄, ā)) ≤ 0. Using the Tracial Transfer Property, it
follows that ψMα

(b̄, ā) ≤ 0. Since by Corollary 2.6 the norms ‖ · ‖2,X and
‖ · ‖2,Xα are equivalent, this implies the existence of p1, . . . , pn satisfying the
conditions (1)–(6), as required. �

This section is devoted to the proof of (2)⇒ (1) in Theorem 7.2, that (α-
)CPoU imply the Tracial Transfer Property. We start by showing that each
of CPoU and α-CPoU imply an apparently stronger technical variation of
themselves. The conclusion of the following lemma reduces to the definition
of CPoU in the case when m = 1.

Proof of Theorem 7.2, (2) ⇒ (1). Assume that M := (M, X, α) is a fac-
torial G-tracially complete C∗-algebra with α-CPoU and that the action
induced by α on X factors through a finite group action. We will prove
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that for every ∀∃-max formula ψ in L‖·‖2,G and any tuple ā in M of the
appropriate sort (writing Mα := (M, Xα, α)) we have

eq:TPP2eq:TPP2 (7.2) ψMα

(ā) = sup
τ∈Xα

ψτ (πτ (ā)).11

The formula ψ(x̄) has the form

ψ(x̄) = sup
‖z̄‖≤1

inf
‖ȳ‖≤1

max{h1(‖Q1(x̄, ȳ, z̄)‖22), . . . , hm(‖Qm(x̄, ȳ, z̄)‖22)}

for m ≥ 1, G-∗-polynomials (possibly, as in §4.4, involving continuous func-
tional calculus) Q1(x̄, ȳ, z̄), . . . , Qm(x̄, ȳ, z̄), and convex, increasing, contin-
uous functions h1, . . . , hm : R→ R.

We start by proving the inequality ≥ in (7.2). This inequality does not
require CPoU. Using that the hj ’s are increasing and continuous in the third
line of the chain of equalities below, and thus commute with the sup, for
tuples ā, b̄, c̄ of elements in M of the appropriate sort we have

ϕMα

(ā, b̄, c̄) = max
j≤m

hj(‖Q1(ā, b̄, c̄)‖22,Xα)eq:qfreeeq:qfree (7.3)

= max
j≤m

hj( sup
τ∈Xα

‖Q1(πτ (ā, b̄, c̄))‖22,τ )

= sup
τ∈Xα

max
j≤m

hj(‖Qj(πτ (ā, b̄, c̄))‖22,τ )

= sup
τ∈Xα

ϕτ (πτ (ā, b̄, c̄)).

This gives (7.2) for quantifier-free max-formulas. Moreover, this implies that
for tuples ā, c̄ of the appropriate sorts in M we have

inf
‖ȳ‖≤1

ϕMα

(ā, ȳ, c̄) = inf
‖ȳ‖≤1

sup
τ∈Xα

ϕτ (πτ (ā, ȳ, c̄))

≥ sup
τ∈Xα

inf
‖ȳ‖≤1

ϕτ (πτ (ā, ȳ, c̄)).

Since c̄ was arbitrary, this in turn implies ψMα
(ā) ≥ supτ∈Xα ψτ (πτ (ā)).

Note that the proof of the inequality ≥ in (7.2) did not require CPoU, (see
Corollary 7.8 stated below).

To prove the that the converse inequality holds in (7.2), we will first
consider the case when ψ is of the form

Eq.psiEq.psi (7.4) ψ(x̄) = inf
‖ȳ‖≤1

ϕ(x̄, ȳ),

where ϕ is a quantifier-free max-formula.
By replacing ψ with ψ − r (the latter is still an ∃-max formula), where

r := supτ∈Xα ψτ (πτ (ā)), we may assume that the right-hand side of (7.2) is
equal to 0. Fix a free ultrafilter U on N and form the ultrapower (Mα)U .
By  Loś’s Theorem, the value of ϕ in Mα is equal to its value in (Mα)U and
therefore it suffices to find, for any given ε > 0, a tuple b̄ of contractions in

11Remember that ψτ is an abbreviation for ψ(πτ [A]′′,τ,ατ ).
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MUXα (which is by Corollary 2.6 equal to MUX) of the appropriate sort and
such that

ϕ(Mα)U (ā, b̄) < ε.

In order to verify this condition for some b̄, by (7.3) applied to (Mα)U it is
enough to show that

eq:TracialTransfer1eq:TracialTransfer1 (7.5) ϕτ (πτ (ā, b̄)) < ε, ∀τ ∈ (Xα)U .

Let ε > 0 be given. By supτ∈Xα ψτ (πτ (ā)) = 0, for each τ ∈ Xα, there
exists a tuple b̄′τ in the unit ball of πτ [M]′′ such that ϕτ (πτ (ā), b̄′τ ) < ε. By
Kaplansky’s density theorem, we can find a tuple b̄τ in the unit ball of M
such that ϕτ (πτ (ā, b̄τ )) < ε.

By the joint continuity of the evaluation function for quantifier-free for-
mulas (Lemma 6.5), it follows that there is an open neighborhood Uτ of τ
in Xα such that for σ ∈ Uτ ,

eq:TracialTransfer2eq:TracialTransfer2 (7.6) ϕσ(πσ(ā, b̄τ )) < ε.

The open neighborhoods Uτ can be assumed to be of the form

Uτ = {σ : σ(sτj ) < 1 for j = 1, . . . , Nτ}

for some sτ1 , . . . , s
τ
Nτ
∈ M+. To see this, let Vτ be the open set {σ :

ϕσ(πσ(ā, b̄τ )) < ε}. Recall that ϕ(x̄, ȳ) has the form

max
j≤m

hj(‖Qj(x̄, ȳ)‖22)

for some increasing convex functions hj : R→ R and some G-∗-polynomials
Qj(x̄, ȳ) for j ≤ m. In particular, given τ ∈ Xα, as the hj ’s are increasing
and continuous, there exists γ > 0 such that if σ satisfies

max
j≤m
‖Qj(ā, b̄τ )‖22,σ − ‖Qj(ā, b̄τ )‖22,τ < γ,

then σ ∈ Vτ . If we set s̃τj = Qj(ā, b̄τ )Qj(ā, b̄τ )∗, we have that if

σ(s̃τj ) < ‖Qj(ā, b̄τ )‖22,τ + γ, ∀j ≤ m,
then σ ∈ Vτ . Multiplying s̃τj by the inverse of the scalar on the right-hand
side of the inequality above, gives the desired sτj ’s and Uτ .

By compactness of Xα, there exists a finite subcover Uτ1 , . . . , Uτk of Xα.
By adding dummy variables if necessary, we may assume that Nτi = N for
all i. We also obtain, by finiteness, a δ < 1 such that for every τ ∈ Xα some
i satisfies

max
j≤N

τ(sτij ) < δ.

By Lemma 3.2 and the α-CPoU, there exist pairwise orthogonal projections
p1, . . . , pk in MUX ∩M′ ∩ {b̄τ1 , . . . , b̄τk}′ such that

(a)
∑k

i=1 pi = 1,
(b) αU (pi) = pi for all i ≤ k,
(c) τ(pis

τi
j ) ≤ δτ(pi) for all i ≤ k, j ≤ r, and τ in (Xα)U .
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Set

b̄ :=
k∑
i=1

pib̄τi .

In order to prove (7.5), fix a tracial state τ ∈ (Xα)U . For every i ≤ k such
that τ(pi) 6= 0, set σi := 1

τ(pi)
τ(pi·). If τ(pi) = 0, simply put σi = τ . Each

σi induces a tracial state on M since pi commutes with all elements in M.
Since X is a closed face, τ ∈ (Xα)U and the pi’s are αU -invariant, in each
case σi is a tracial state in Xα.12 Notice that, for every G-∗-polynomial
Q(x̄, ȳ), using the properties of the pi’s we have

‖Q(ā, b̄)‖22,τ = τ(Q(ā, b̄)Q(ā, b̄)∗)

=
k∑
i=1

τ(piQ(ā, b̄τi)Q(ā, b̄τi)
∗)

=

k∑
i=1

τ(pi)‖Q(ā, b̄τi)‖22,σi .

As
∑k

i=1 τ(pi) = 1 and ϕ as in (7.4) is convex, we get that

eq:TracialTransfer3eq:TracialTransfer3 (7.7) ϕτ (πτ (ā, b̄)) ≤
k∑
i=1

τ(pi)ϕ
σi(πσi(ā, b̄τi)).

Also, in the case when τ(pi) 6= 0, since τ(pis
τi
j ) ≤ δτ(pi) < τ(pi), we have

that σi(s
τi
j ) < 1, so that σi ∈ Uτi . It follows by (7.6) that for all i ≤ k we

have

ϕσi(πσi(ā, b̄τi)) ≤ ε.
Combining this with (7.7), we conclude

ϕτ (πτ (ā, b̄)) ≤
∑
i=1

τ(pi)ε = ε,

as required.
It remains to consider the general case, when

ψ(x̄) = sup
‖z̄‖≤1

inf
‖ȳ‖≤1

ϕ(x̄, ȳ, z̄).

For any tuple of parameters c̄ of the same sort as z̄, the formula inf‖ȳ‖≤1 ϕ(x̄, ȳ, c̄)
is of the form handled in (7.4) and therefore satisfies the converse inequality
in (7.2). Since c̄ is arbitrary, this completes the proof. �

The proof of Theorem 7.2 yields the following.

12If τ = (τn)n∈N and pi = (pni )n∈N, then σi = limn→U
1

τn(pni )
τn(pni ·), hence σi is a limit

of elements which belong to X, since the latter is a face.
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L.TTP Corollary 7.8. Let M = (M, X, α) be a factorial G-tracially complete C∗-
algebra. Then M has α-CPoU if and only if for every ∃-max L‖·‖2,G-formula ψ(x̄)
and every tuple ā of elements of M of the appropriate sort we have

ψMα

(ā) ≤ sup
τ∈Xα

ψτ (πτ (ā)),

where Mα is as in Definition 5.6.

Proof. The reason why it is suffices to state this for ∃-formulas instead of
∀∃-formulas can be recovered from the proof of the implication (1) ⇒ (2) in
Theorem 7.2. In a nutshell, instead of proving (sup‖x̄‖≤1 inf‖ȳ‖≤1 ϕ(x̄, ȳ))M =

0, it suffices to prove (inf‖ȳ‖≤1 ϕ(ā, ȳ))M = 0 for every tuple of parameters
ā in M of the appropriate sort. In particular, the formula ψ(ȳ, z̄) defined
in the proof of Theorem 7.2, ensuring the existence of CPoU, is an ∃-max
formula. �

8. Applications
S.applicationsS.easy

8.1. Easy applications. We start by listing the most obvious (and already
known) applications of Theorem, 7.1.

C.uct.unitary Corollary 8.1. In every factorial tracially complete C∗-algebra (M, X) with
CPoU, the unitaries of the form exp(ia) for 0 ≤ a ≤ 2π, are ‖ · ‖2,X-dense
in the unitary group.

Proof. In every von Neumann algebra, by the Borel functional calculus every
unitary is of the form exp(ia) for some 0 ≤ a ≤ 2π. The definable predicate
(see Example ??) ϕ(x) := inf‖z‖≤1 ‖x− exp(2πiz∗z)‖22 is ∃-max.

Fix a unitary u inM. Then πσ(u) is a unitary for every σ ∈ X, and there-
fore ϕσ(πσ(u)) = 0. By Theorem 7.1, M has the Tracial Transfer Property,

and therefore ϕ(M,X)(u) = 0, which implies that u can be approximated
arbitrarily well in the ‖ · ‖2,X -norm by exp(iz) for some 0 ≤ z ≤ 2π. Since
u was arbitrary, this concludes the proof. �

It is not known whether the conclusion of Corollary 8.1 can be improved to
the assertion that in a tracially closed C∗-algebra with CPoU every unitary
has a logarithm, or even that the unitary group of (M, X) is path-connected.
We however have the following.

C.uct.unitary.saturated Corollary 8.2. If (M, X) is an ultraproduct or a reduced product associated
to the Fréchet filter of factorial tracially complete C∗-algebras with CPoU,
or a relative commutant of a separable C∗-subalgebra of such ultraproduct
or reduced product, then every unitary in (M, X) is of the form exp(ia) for
0 ≤ a ≤ 2π.

Proof. If M = (M, X) is an ultraproduct (or a reduced product) of facto-
rial tracially complete C∗-algebras with CPoU, then it is itself is factorial,
tracially complete and has CPoU (see [6] or [18]). If u ∈ M is a unitary
and ϕ(x) := inf‖z‖≤1 ‖x − exp(2πiz∗z)‖22 is the formula from Corollary 8.1,
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the proof of this corollary shows that ϕM(u) = 0. As a consequence, the
type composed by a unique condition ‖u − exp(2πiz∗z)‖22 = 0 (with the
understanding that z ranges over the unit ball), is approximately satisfiable
in (M, X). By Theorem 4.5, (M, X) is countably quantifier-free saturated,
hence there is b ∈ M such that, setting a = 2πb∗b, we have u = exp(ia), as
desired.

If (M, X) is a commutant of a separable subalgebra S of an ultraprod-
uct (or a reduced product) of factorial tracially complete C∗-algebras with
CPoU, then one obtains the conclusion by considering the type determined
by the set of formulas (the point is that (M, X) is countably quantifier-free
saturated, see [14, Corollary 16.5.4])

{‖u− exp(2πiz∗z)‖22, ‖[z, b]‖22 : b ∈ D},

where D is a countable dense subset of S ((M, X) is still countably saturated
by Theorem 4.5). �

In the proof of Corollary 8.2 the ultraproduct or reduced product of M can
be replaced by any countably quantifier-free saturated model of the theory
of factorial tracially closed C∗-algebras with CPoU, as well as with the rela-
tive commutant of any of its separable C∗-subalgebras. This includes many
reduced powers associated with free filters on N, but not all of them (e.g., a
reduced product of C∗-algebras with respect to the asymptotic density zero
filter is not countably saturated, see [14, p. 420]).

The conclusion of the following is an approximate comparison of projec-
tions.

C.comparison Corollary 8.3. Suppose that (M, X) is a factorial tracially complete C∗-
algebra with CPoU. If p and q are projections in M such that σ(p) ≤ σ(q)
for every σ ∈ ∂eX, then for every ε > 0 there exists v ∈ M such that
‖p− v∗vp‖2,X < ε and ‖q − vv∗‖2,X < ε.

Proof. The formula ψ(y, z) := inf‖x‖≤1 max{‖y − x∗xy‖22, ‖z − xx∗‖22} is ∃-
max. If p and q are projections as in the statement of this corollary, then
since finite von Neumann algebras satisfy the comparison of projections we
have ψσ(πσ(p, q)) = 0 for all σ ∈ X. By Theorem 7.1 (M, X) satisfies the
Tracial Transfer Property, and the conclusion follows. �

As in the case of Corollary 8.2, more can be said in the presence of satu-
ration.

cor:MvN Corollary 8.4. Suppose that (M, X) is an ultraproduct or a reduced prod-
uct associated to the Fréchet filter of factorial tracially complete C∗-algebras
with CPoU, or a relative commutant of a separable C∗-subalgebra of such
ultraproduct or reduced product. If p and q are projections in M such that
σ(p) ≤ σ(q) for every σ ∈ ∂eX, then there exists a partial isometry v in M
such that p ≤ v∗v and q = vv∗.
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Proof. As in the proof of Corollary 8.2, (M, X) is countably quantifier-free
saturated. Fix p and q as in the assumption and consider the type with
conditions ‖p−x∗xp‖2,X = 0 and ‖q−xx∗‖2,X = 0 (with the understanding
that the variable x ranges over the unit ball). This quantifier-free type is
approximately realizable in (M, X) by Corollary 8.3, and therefore realized
by some v. Clearly v is as required. �

A more involved argument allows one to refine Corollary 8.3 and obtain
the conclusion of Corollary 8.4, that there is v ∈ M such that p ≤ v∗v
and q = vv∗, in every factorial tracially complete C∗-algebra with CPoU,
saturated or not (see [6]).

8.2. Uniform Property Γ. A II1 factor N is said to have property Γ when
its central sequence algebra N U ∩ N ′ is non-trivial. Dixmier proved that
Property Γ is equivalent to N U ∩ N ′ being diffuse ([11]), a property which
asserts, for all n ∈ N, the existence of projections p1, . . . , pn ∈ N U ∩ N ′
such that

∑
j≤n pj = 1 and τNU (pi) = 1/n for all j ≤ n. This property

was generalized to tracial ultrapowers of C∗-algebras in [8, Definition 2.1],
and the following is the obvious analog of the definition in case of tracially
complete C∗-algebras.

def:gamma Definition 8.5 (Uniform Property Γ). Let (M, X) be a tracially complete
C∗-algebra. We say that (M, X) has uniform property Γ if for every n ∈ N
and every free ultrafilter U on N there are projections p1, . . . pn ∈MUX ∩M′
such that

(1)
∑n

i=1 pi = 1,

(2) τ(api) = 1
nτ(a) for all a ∈M, τ ∈

∏U X and i ≤ n.

For a (not necessarily tracially complete) C∗-algebra A, we say that A has

uniform property Γ if (A
T (A)

, T (A)) has uniform property Γ. This latter
definition is equivalent to [8, Definition 2.1].

A standard argument shows that the definition does not depend on the
choice of U (see Corollary 8.9).

It is immediate to see that, for II1 factors, the notion of uniform property
Γ in Definition 8.5, and the von Neumann algebraic property Γ from [11], are
the same. We will implicitly take advantage of this fact later in Corollary
8.8.

A theory is said to be ∀∃-max if all of its sentences are. (Needless to say,
one can analogously consider theories with any of the properties defined
in §5.1, but we will need only this particular variation.) The definition
of uniform property Γ apparently requires quantification over projections.
Since the set of projections is not definable in tracially complete C∗-algebras,
or even in factorial tracially complete C∗-algebras ([18]), the following result
may seem somewhat surprising. The trick lies in the fact that the projections
are required to exist in the ultrapower of the C∗-algebra in question.
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T.Gamma Theorem 8.6. Uniform property Γ is ∀∃-max axiomatizable in the theory
of tracially complete C∗-algebras.

Prior to proving this theorem we consider some of its corollaries. Since
every ∀∃-axiomatizable class is closed under inductive limits (this is the easy
direction of [16, Proposition 2.4.4 (3)]), Theorem 8.6 implies the following.

C.Gamma Corollary 8.7. Uniform property Γ is preserved in inductive limits of tra-
cially complete C∗-algebras.

The Tracial Transfer Property also applies to uniform property Γ, the lat-
ter being ∀∃-axiomatizable. In particular we have the following application
of Theorem 7.1 where, as in Definition ??, we say that a C∗-algebra A with
a nonempty and compact simplex of tracial states has CPoU if the factorial

tracially complete C∗-algebra (A
T (A)

, T (A)) has CPoU.

theorem:Gamma Corollary 8.8. Suppose that A is a separable C∗-algebra such that T (A) is
nonempty and compact, and with CPoU. Then A has uniform property Γ if
and only if πτ [A]′′ has property Γ for every extremal tracial state τ .

Proof of Theorem 8.6. Using the predicate τ+ (Definition 5.9), let

τ †(a) := max{τ+(a), 0}.
Since τ+ is quantifier-free max-definable (Lemma 5.10), so is τ †. In addition,
τ † is positive and for self-adjoint a and b in any tracially complete C∗-algebra
(M, X) we have τ †(a− b) = 0 if and only if τ(a) ≤ τ(b) for all τ ∈ X.

Fix m ≥ 1 and n ≥ 2. Let ψm,n(x̄, ȳ) denote the following formula in
an m-tuple of variables x̄ and an n-tuple of variables ȳ (for the quantifier-
free max formula ϕp(yj), whose zero set in a given algebra is the set of its
projections, see Example 5.4(2))

max
{

max
j≤n

ϕp(yj), ‖1−
∑
j≤n

yj‖22, max
i≤m,j≤n

{‖[xi, yj ]‖22,

τ †(yjx
∗
ixi − (1/n)x∗ixi)), τ

†((1/n)x∗ixi − yjx∗ixi)}
}

and let
ϕΓ,m,n := sup

‖x̄‖≤1
inf
‖ȳ‖≤1

ψm,n(x̄, ȳ).

Fix a tracially complete C∗-algebra M = (M, X). We claim that M has
uniform property Γ if and only if ϕM

Γ,m,n = 0 for all m and n.

Before proceeding to prove this, note that ψM(b̄, p̄) = 0 if and only if,
with aj := b∗jbj , we have that p̄ = (p1, . . . , pn) are projections in the relative

commutant of ā such that
∑

j≤n pj = 1 and τ(aipj) = 1
nτ(ai) for all i ≤ m

and all j ≤ n.
For the converse implication assume ϕM

Γ,m,n = 0 for all m and n and

consider an ultrapower MU . By  Loś’s Theorem we also have ϕMU

Γ,m,n = 0. For

each m let ā(m, j), for j ∈ N, enumerate a dense set of m-tuples in Mm.
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For a fixed n, consider the type t(ȳ) consisting of all conditions of the form
ψm,n(ā(m, j), ȳ) = 0. By assumption t(ȳ) is consistent and by saturation it

is realized in MU . Its realization is an n-tuple of projections as required.
Conversely, suppose that M has uniform property Γ and fix an m-tuple ā

in the unit ball ofM and an n-tuple of projections p̄ inMU ∩M′ as in the

definition of uniform property Γ. Then ψMU
m,n(ā, p̄) = 0. By  Loś’s Theorem,

inf‖ȳ‖≤1 ψ
M
m,n(ā, ȳ) = 0. Since ā was an arbitrary m-tuple in the unit ball,

we conclude that ϕM
Γ,m,n = 0. �

Arguing like we did in Proposition 7.7 for CPoU, the proof of Theorem 8.6
can be used to infer a well-known fact, that if the definition of uniform
Property Γ is modified by requiring the projections pj to belong to the
relative commutant of an arbitrary separable subset of the ultrapower, the
resulting property is equivalent to uniform property Γ itself.

cor:gammaU Corollary 8.9. A tracially complete C∗-algebra (M, X) has uniform prop-
erty Γ if and only if for every n ∈ N, every free ultrafilter U on N and every
‖ · ‖2,X-separable S ⊆MUX , there are projections p1, . . . pn ∈ MUX ∩ S′ such
that

(1)
∑n

i=1 pi = 1,

(2) τ(api) = 1
nτ(a) for all a ∈ S, τ ∈

∏U X and i ≤ n.

The fact that uniform property Γ is axiomatizable by an ∀∃-max predicate
has the following useful consequence.

Corollary 8.10. Uniform property Γ is preserved under reduced products
of tracially complete C∗-algebras.

Proof. Every max-formula belongs to the class of conditional formulas (see
[22, Definition 3.5]; take n = 0), which are preserved by reduced products
(see [22, Theorem 3.9] and [27]). �

8.3. Projectionization. We will need the following well-known consequence
of [10, §2 and Corollary 6.4] (stated explicitly in [7, Proposition 1.2] but with-
out the lower bound −ε, and in [26, Theorem 9.3], under the unnecessary
simplicity assumption on the C∗-algebra in question).

theorem:CuntzPedersen Theorem 8.11 (Cuntz–Pedersen). If A is a C∗-algebra such that T (A) is
nonempty and compact, then every weak∗-continuous, affine, real-valued
function f on T (A) can be represented as the evaluation at a self-adjoint
element a, in the sense that f(τ) = τ(a) for all τ ∈ T (A). In addition,
if f ≥ 0 then we can assure that −ε ≤ a ≤ ‖f‖∞ + ε for any prescribed
ε > 0. �

An argument using countable saturation can be used to show that in an
ultraproduct a as in the conclusion of Theorem8.11 can be chosen so that
0 ≤ a ≤ ‖f‖∞. In the following we go a step further.
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prop:projection Proposition 8.12. Suppose that A is a C∗-algebra such that T (A) is nonempty
and compact, A has CPoU, that f : T (A) → [0, 1] is weak∗-continuous and
affine, and that U is a free ultrafilter on N. Then the following are equiva-
lent.

1.lemma:projection-1 (1) There exists a projection p ∈ AU such that f(τ) = τ(p) for all τ ∈
T (A).

2.lemma:projection-1 (2) Every extremal tracial state τ such that πτ [A]′′ is a type In factor
for some n satisfies nf(τ) ∈ N.

Moreover, if πτ [A]′′ is McDuff for all τ ∈ ∂eT (A) (in this case (??) is
vacuous), then p as in (??) can be chosen in AU ∩ S′ for every separable
S ⊆ AU .

Proof. Assume that (1) holds. Fix τ ∈ ∂eT (A) and let (πτ , Hτ , ητ ) the
corresponding GNS representation. Let HU be the metric ultrapower of Hτ ,
that is the set of all bounded sequences in

∏
n∈NHτ modulo the ideal

c0,Hτ :=
{

(ξn)n∈N ∈
∏
n∈N

Hτ : lim
n→U
‖ξn‖ = 0

}
.

It follows that HU is a Hilbert space with scalar product, given two vectors
(ξn)n∈N,(ηn)n∈N ∈ HU , defined as

〈(ξn)n∈N, (ηn)n∈N〉U = lim
n→U
〈ξn, ηn〉.

Let πUτ : AU → B(HU ) be the representation mapping each (an)n∈N in AU to
the operator sending a given vector (ξn)n∈N ∈ HU to the vector (πτ (an)ξn)n∈N.
It is immediate to see that the constant sequence η̄ := (ητ )n∈N is a cyclic
vector for πUτ , and that

〈πUτ ((an)n∈N)η̄, η̄〉U = lim
n→U
〈πτ (an)ητ , ητ 〉 = lim

n→U
τ(an).

By uniqueness of the GNS representation, it follows that πUτ is spatially
equivalent to the GNS representation associated to the limit tracial state
mapping each (an)n∈N ∈ AU to limn→∞ τ(an). By assumption we have
πτ [A] ∼= Mn for some n ∈ N. By compactness of the unit ball of Mn, it
follows that the map

Θ : πτ [A]→ πUτ [AU ]

b 7→ (b)n∈N,

is a surjective isomorphism. It follows that πUτ [AU ]′′ ∼= πUτ [A] ∼= Mn.
Suppose that p is a projection in AU such that f(σ) = σ(p) for every

σ ∈ T (A). We conclude that πUτ (p) is a projection in Mn(C). Therefore
τ(p) = j/n for some j ≤ n, and (2) follows.

To prove that (2) implies (1), fix f as in the statement. Fix ε > 0. By
Theorem 8.11 there exists a self-adjoint a ∈ A such that τ(a) = f(τ) for all
τ ∈ T (A) and −ε ≤ a ≤ ‖f‖∞ + ε. The formula

ϕ(y) := inf
‖x‖≤1

max{‖x2 − x‖22, ‖x∗ − x‖22, |τ+(x− y)|, |τ+(y − x)|}
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is ∃-max. If τ ∈ ∂eT (A), then by the assumptions on f there exists a
projection p in πτ [A]′′ such that τ(p) = f(τ), hence τ(p) = τ(a). Since
τ+ is interpreted as τ in πτ [A]′′, we have ϕτ (πτ (a)) = 0. Since τ was
an arbitrary extremal tracial state, Theorem 7.1 implies that ϕA(a) = 0,

for A = (A
T (A)

, T (A)). Therefore for every n ≥ 1 there exists bn ∈ AU

such that ϕ(AU ,(T (A))U )(bn) < 1/n. Since AU is countably saturated ([14,
Theorem 16.4.1]), this type is realized and the conclusion follows.

For the moreover part, modify the type used in the previous paragraph
by adding the conditions ‖[cn, x]‖22 where cn ranges over a dense subset of
S. �

8.4. C∗-Dynamics. A recent application of CPoU in the equivariant set-
ting which is in line with the framework of this paper is contained in [19].
This paper deals with dynamical systems of amenable groups on simple,
separable, unital, Z-stable C∗-algebras which, under suitable regularity as-
sumptions, are shown to have α-CPoU.

thm:equiCPoU Theorem 8.13. Let A be a separable, nuclear, Z-stable, unital C∗-algebra
with non-empty tracial state space, and let α : G→ Aut(A) be an action of
a discrete, countable, amenable group which is cocycle conjugate to α⊗ idZ
and such that the induced action on T (A) factors through a finite group

action. Then (A
T (A)

, T (A), α) has α-CPoU.13

Assuming that an action α as in the statement is suitably outer, the
presence of α-CPoU is used in [19] to prove that the dynamical system
satisfies a certain Rokhlin-type condition. From the perspective given by the
present paper, the argument used to show this fact consists of a particular
instance of the Tracial Transfer Property. Let us give a quick sketch of this
argument, after pointing out that model-theoretic study of C∗-dynamics has
been used in [20].

In the context of actions of amenable groups on von Neumann algebras,
the Rokhlin Property is a noncommutative analogue of the classical result
in ergodic theory known as Rokhlin’s Lemma. For actions of Z on tracial
von Neumann algebras, the exact definition is given below. We refer to [28,
§6.1] for a definition suitable to a more general setting.

rokhlinprop Definition 8.14 (Rokhlin Property for actions of Z). Let (M, τ) be a tra-
cial von Neumann algebra. The automorphism α ∈ Aut(M) has the Rokhlin
Property if for every n ∈ N and every ‖ · ‖2,τ -separable subset S of the tra-
cial von Neumann ultrapowerMU (which in the notation introduced in §??
would beMU{τ}) there are orthogonal projections p1, . . . , pn ∈MU ∩S′ such

that

13The definition of α-CPoU given in [19] is slightly different from Definition ??, since
the inequality τ(aipi) ≤ Mδτ(pi) is required to hold for some M ∈ N possibly larger
than 1. This is just an apparent difference, since the two definitions can be proved to be
equivalent using an argument analogous to the one in the proof of Lemma 3.2.



46 FARAH, HART, HIRSHBERG, SCHAFHAUSER, TIKUISIS, AND VACCARO

(1)
∑n

i=1 pi = 1,
(2) α(pi) = pi+1 mod (n).

The set {p1, . . . , pn} is referred to as a Rokhlin tower.

In [9] Connes proved that an automorphism of a tracial von Neumann
algebra (M, τ) has the Rokhlin property if and only if all its powers are
properly outer (this was later expanded to outer actions of discrete countable
amenable groups on II1 factors in [23] and [28]). Instead of defining proper
outerness, we will define and use a related condition.

Sticking to the case G = Z, an action α : Z → Aut(A) on a simple C∗-
algebra A is strongly outer if ατ is outer on πτ [A]′′ for every τ in T (A)α.
Strong outerness of α implies that ατ is properly outer for every τ ∈ T (A)α

(see e.g. [33, Proposition 5.7]), hence by Connes’ result this allows one
to verify the Rokhlin Property fiberwise. In case the action induced by
α on T (A) factors through a finite group action, α-CPoU can be used to
glue together these local Rokhlin towers from the fibers to obtain a global
Rokhlin-type condition, known as uniform tracial Rokhlin Property, which
states the existence of families of projections as in Definition 8.14 in the
tracial ultrapower AU .

What we just exposed is a simplified version of what happens in [19],
where the framework is much wider and it includes actions of general amenable,
countable, discrete groups. On the other hand, the argument in the previ-
ous paragraph is an immediate consequence of Theorem 8.13 and Theorem
7.2. Indeed, the existence of Rokhlin towers can be expressed by ∀∃-max
sentences indexed over N × N as follows, in an n-tuple of variables x̄ and
an m-tuple of variables ȳ (ϕp(x) is the formula axiomatizing projections
introduced in Example 5.4(2))

(8.1) ρn,m = sup
‖x̄‖≤1

inf
‖ȳ‖≤1

max
i≤n,j≤m

{ϕp(yj), ‖
n∑
j=1

yj − 1‖22,

‖α(yj)− yj+1‖22, ‖[xi, yj ]‖22}.
Another property that can be easily transferred from the fibers of a tra-
cially complete C∗-algebra to the algebra itself is approximate innerness of
automorphisms. Let (M, X) be a tracially complete C∗-algebra and let
α ∈ Aut(M). We say that α is approximately inner if for every finite set
F ⊂M and every ε > 0 there exists a unitary u ∈M such that

‖α(a)− uau∗‖2,X < ε, ∀a ∈ F.

P.approximately-inner Proposition 8.15. Let (M, X, α) be a factorial Z-tracially complete C∗-
algebras such that the action induced by α on X factors through a finite group
action. Suppose that (M, X, α) has α-CPoU. Then α is approximately inner
if and only if ατ is approximately inner on (πτ [A]′′, τ) for every τ ∈ T (A)α.

Proof. If α is approximately inner, it is immediate to check that ατ is ap-
proximately inner for every τ ∈ T (A)α.
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For the other direction, consider the collection of the following formulas
in an n-tuple of variables x̄

ψn = sup
‖x̄‖≤1

inf
‖y‖≤1

max
j≤n
{‖α(xj)− exp (i2πy∗y)xj exp (−i2πy∗y)‖22}.

An automorphism of a tracial von Neumann algebra is approximately inner if
and only if all ψn’s are evaluated as zero, since all unitaries admit a logarithm
on von Neumann algebras. The conclusion then follows by Theorem 7.2. �

9. Concluding remarks

The Tracial Transfer Property (and therefore CPoU) is strictly weaker
than Z-stability, on separable simple nuclear C∗-algebras. For example, the
C∗-algebra constructed in [30, Theorem 1.4] (see also [16, Proposition 3.5.6])
is nuclear, simple, separable and unital, but not Z-stable, and its tracial
completion is isomorphic to the hyperfinite II1-factorR and therefore has the
Tracial Transfer Property. Examples of separable C∗-algebra without the
Tracial Transfer Property include C([0, 1],C∗r(F2)) and C(K) forK compact,
Hausdorff, connected and having more than one point (see [6, Proposition
3.31]). Presently, no example of a nuclear, simple, and infinite-dimensional
C∗-algebra A and a closed face X ⊆ T (A) such that the tracial completion

of (A
X
, ‖ · ‖2,X) fails the Tracial Transfer Property is known.

S.Beyond
9.1. Beyond ∀∃-max formulas. It is not too difficult to show that if a
tracially complete C∗-algebra satisfies the Tracial Transfer Property, then
the class of formulas satisfying equality (5.9) (or (5.10) of Definition 5.5 is
larger than the family of ∀∃-max formulas. Indeed, suppose that ψ(x̄) is an
L‖·‖2-formula which, for every tracially complete C∗-algebra M := (M, X)
and every tuple ā in M of the appropriate sort, satisfies

eq:TTP-eq:TTP- (9.1) ψM(ā) = sup
τ∈X

ψτ (πτ (ā)).

Then ϕ(x̄) := h(ψ(x̄)) also satisfies the equality in (9.1), whenever h : R→
R is a continuous increasing function. The reason is the following simple
computation, exploiting the fact that the sup commutes with continuous
increasing functions on R

ϕM(ā) = h(ψM(ā))

(9.1)
= h(sup

τ∈X
ψτ (πτ (ā)))

= sup
τ∈X

h(ψτ (πτ (ā)))

= sup
τ∈X

ϕτ (πτ (ā)).

Analogous computations show that if ψ1(x̄), . . . ψk(x̄) satisfy (9.1), then also
the formula max{ψ1(x̄), . . . ψk(x̄)} does. In this paper we content ourselves
with showing that CPoU entail the tracial transfer for ∀∃-max formulas, as
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these proved to be the most useful in our applications in §8. Nevertheless,
it would be interesting to investigate what is the largest class of formulas to
which this transfer property applies (keeping in mind that some inevitable
limits are necessary, as discussed in Remark 5.8), and whether it is possible
to characterize it abstractly.

These considerations may be a part of a bigger picture.
Ghasemi’s Feferman–Vaught theorem for continuous logic ([21], see also

[14, §16.3]) is indispensable in study of reduced products of C∗-algebras (see
for example the proof that the reduced products are countably saturated
in [14, §16.5] or the proof in [15] that the exact sequence 0 7→ cU (B) 7→
B∞ → BU → 0 splits). Our results in §6 may be an initial step towards
proving a theorem of this type. The following is a consequence of the proof
of Theorem 6.2 (for simplicity we do not state the dynamic version).

T.II1.convex.transfer Theorem 9.1. Suppose that (T, µ) is a Radon probability measure space,
{Nσ}σ∈T is a measurable field of type II1 von Neumann algebras with sepa-

rable predual, and N =
∫ ⊕
T Nσ dµ(σ). If ϕ(x̄) is an ∀∃-convex L‖·‖2-formula

or an ∀∃-convex definable predicate, then every tuple ā = (āσ)σ∈T in N of
the appropriate sort satisfies ϕN (ā) ≤ ‖σ 7→ ϕNσ(āσ)‖∞. �

We conjecture that in the situation of Theorem 9.1 it is possible to effec-
tively compute the theory of N from the L∞(T, µ) functions ψ 7→ ψNσ(āσ)
(more precisely, that a measurable analog of [14, Definition 16.3.2] applies
to every ϕ). The following question is more challenging.

Question 9.2. Is there a Feferman-Vaught-type theorem that computes the
theory of a tracially complete C∗-algebra M = (M, X) with CPoU from the
information on the sets

Zψ,r = {σ ∈ ∂eX : ψσ ≤ r}
for a sentence ψ and r ∈ R? What about the analogous question for G-
tracially complete C∗-algebras?

The answer is probably negative in the case when M does not satisfy
CPoU.

Appendix A. Axiomatizability

In this appendix we prove the axiomatizability in L‖·‖2 and L‖·‖2,G of both
the tracially complete C∗-algebras (Theorem A.1) and tracial von Neumann
algebras and factors (Theorem A.2; the difference with the known result
from [17] is that we prove axiomatizability in the slightly more restrictive
language of tracially complete C∗-algebras).

It is currently not known whether the class of factorial tracially com-
plete C∗-algebras is axiomatizable (however factorial tracially complete C∗-
algebras with CPoU are axiomatizable, [18]). In particular it is open whether
the ultraproduct of a family of factorial tracially complete C∗-algebras is still
factorial.
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A.1. Tracially complete C∗-algebras. We introduce two equivalent cate-
gories - the category of tracially complete C∗-algebras with embeddings, and
the category of tracially complete C∗-algebras thought of as metric L‖·‖2-
structures, again with embeddings. We then show that the latter class of
metric structures is elementary.

TC is the category of tracially complete C∗-algebras (M, X). Since we
really only retain the uniform 2-norm for a given (M, X) there is some ambi-
guity here in that different X’s can give the same tracially complete algebra.
We will assume that X is maximal when we talk about tracially complete
algebras in this appendix. This will mean that an additional assumption
on X is that for τ ∈ T (M), if ‖ · ‖τ ≤ ‖ · ‖2,X then τ ∈ X. This clearly
implies that X is convex and weak∗-closed. We are now able to describe the
morphisms in TC as follows:

ϕ : (N , Y )→ (M, X)

is a morphism if ϕ is an injective *-homomorphism from N toM such that
ϕ∗(X) = Y . An application of the Hahn-Banach theorem shows that Y
satisfies the maximality condition we are assuming.

The category of metric structures MTC has as objects tracially complete
C∗-algebras in the language L‖·‖2 defined in §??. Since the sorts Dn are still
given by the operator norm balls of radius n, these balls are complete with
respect to the uniform 2-norm. The morphisms in this category are injective
*-homomorphisms which preserve the uniform 2-norm.

T.utc.axiomatizable Theorem A.1. The category of tracially complete C∗-algebras TC is cate-
gorically equivalent to the category MTC. Furthermore, MTC is an elemen-
tary class.

Proof. Define a functor F : TC → MTC sending (M, X) ∈ TC to the
metric structure associated withM and ‖ ·‖2,X . On morphisms, F sends an
injective *-homomorphism to essentially the same map only partitioned by
operator norm. We leave it as an exercise to see that this is an equivalence.
One small point is that if one starts with an object (M, ‖·‖2,X) in MTC then
by the convention that we choose a maximal X ⊆ T (M) compatible with
the uniform 2-norm, there is no ambiguity about which tracially complete
C∗-algebra (M, ‖ · ‖2,X) is sent to it by F . Instead of exhibiting axioms
for MTC, we take an indirect route and use [16, Theorem 2.4.1]. By this
result, a class of metric structures is elementary if (and only if) it is closed
under isomorphisms, ultraproducts, and elementary submodels (or simply
ultraroots). MTC is clearly closed under isomorphisms.

Suppose that (Mj , ‖ · ‖2,Xj ), for j ∈ J, is a family of tracially complete
C∗-algebras in MTC and U is an ultrafilter on J. Note that we are assuming
that Xj is maximal in the sense mentioned before the Theorem and so
Xj is both convex and closed for all j. The tracial ultraproduct M :=∏U (Mj , ‖·‖2,Xj ) is the quotient of the direct product

∏
j∈JMj by the ideal

{(aj)j | limj→U ‖aj‖2,Xj = 0}.
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Let Y0 be
∏U Xj , the set of all limit tracial states on M (as defined

in §??). It is easy to see that Y0 is convex and sequentially closed, but as

pointed out in §?? it is not necessarily weak∗-closed. Let Y :=
∑U Xj denote

the weak∗-closure of Y0 and note that the norms ‖·‖2,Y and ‖·‖2,Y0 coincide.
We claim that the ultraproduct 2-norm on M is equal to ‖ · ‖2,Y ; once

proven, this will imply that M is isometrically isomorphic to (
∏UMj , Y )

and therefore tracially complete. For a representing sequence (aj) of an
element of M we have

‖(aj)‖2,Y = sup
(τj)j

lim
j→U
‖aj‖2,τj

where the supremum is taken over all limit tracial states (τj)j∈J in
∏U Xj .

For every j ∈ J, since the evaluation of tracial states at a∗jaj is weak∗-
continuous and Xj is compact, this supremum is attained at some tracial
state denoted τj ∈ Xj . Thus we have ‖(aj)‖2,Y = limj→U ‖aj‖2,τj . The
right-hand side is not greater than limj→U ‖aj‖2,Xj . On the other hand,
limj→U ‖aj‖2,Xj is (again by weak∗-continuity) equal to limj→U ‖aj‖2,τj for
a limit tracial state (τj), and therefore not greater than ‖(aj)‖2,Y .

This proves the equality, and therefore the ultraproduct is the tracially
complete C∗-algebra (

∏UMj ,
∑U Xj).

It remains to prove that if (M, X) is tracially complete and N is an
elementary submodel of (M, X) with domain N , then the restriction of
‖ · ‖2,X to N is equal to ‖ · ‖2,X(N ), where X(N ) := {τ � N : τ ∈ X}.
As N is elementary submodel of (M, X), for every a ∈ N we have that
‖a‖N2 = ‖a‖2,X ≤ ‖a‖2,X(N ). Moreover, as ‖ · ‖2,X ≤ ‖ · ‖, N is closed
with respect to the operator norm, and therefore a C∗-algebra. Finally, an
application of the Hahn-Banach theorem shows that X(N ) is maximal in
the necessary sense, i.e. every τ ∈ T (N ) which satisfies ‖·‖τ ≤ ‖·‖2,X(N ) can

be extended to a tracial state onM which is in X. Hence ‖a‖2,X(N ) ≤ ‖a‖N2
and we are done. �

S.vNA

A.2. Tracial von Neumann Algebras and Factors. In what follows, by
tracial von Neumann algebra we mean a pair (M, τ) where τ is a faithful
tracial state on a von Neumann algebra M.

In [17, §3.2] it is proved that both classes of tracial von Neumann algebras
and of II1 factors are elementary in the language of tracial von Neumann
algebras defined in [17, §2.4]. The latter language is richer than our L‖·‖2
from §??, since it also contains two unary predicates, trr and tri, which are
interpreted on tracial von Neumann algebras as the real and the imaginary
part of the tracial state.

In this section we prove that the classes of tracial von Neumann algebras
and of II1 factors are also elementary in the context considered in this paper,
that is as L‖·‖2-structures. To do this, we rely on the predicate τ+ introduced
in Definition 5.9, and on the fact that it is definable on tracially complete
C∗-algebras (Lemma 5.10).
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thm:vNas Theorem A.2. The classes of tracial von Neumann algebras and of II1

factors, seen as structures in L‖·‖2, are elementary.

Proof. We start by showing that the class of tracial von Neumann algebras
(M, τ) is elementary. Note that the domain M of a tracially complete C∗-
algebra (M, X) such that X is a singleton τ is automatically a von Neumann
algebra. Indeed, in this case the ‖ · ‖2,τ -norm induces the strong topology
onM in the GNS-representation associated with τ , hence by the Kaplansky
density theorem and completeness of the unit ball ofM with respect of the
‖ · ‖2,τ -norm, we can conclude that M∼= πτ [M] = πτ [M]′′.

In view of this, it suffices to axiomatize the class of those tracially com-
plete C∗-algebras M = (M, X) such that X = {τ}. By Theorem A.1 we
already know that the class of tracially complete C∗-algebras is elementary.
A standard argument combining the Hahn-Banach Theorem with Theorem
8.11 shows that X = {τ} if and only if the definable predicate τ+ is addi-
tive on self-adjoint elements of M. By Lemma 5.10, the latter property is
expressible via the following definable predicate

(A.1) sup
‖x‖,‖y‖≤1

(
τ+
(x+ x∗

2
+
y + y∗

2

)
− τ+

(x+ x∗

2

)
− τ+

(y + y∗

2

))
.

Axiomatizability of the class of II1 factors can be obtained using axioms
(16) and (17) from [17, §3.2] (see [17, Proposition 3.4], also §6.3.2). �
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