Math 6462, W22. Assignment \# 4 solutions

In all questions, H stands for the separable infinite-dimensional Hilbert space.
(1) (10pts) Suppose that (X, μ) is a probability measure space and that T is a Hilbert-Schmidt operator on $L^{2}(X, \mu)$. Prove that there is $k \in L^{2}(X \times X, \mu \times \mu)$ such that T is the operator associated to the kernel k, so that for every $\xi \in L^{2}(X, \mu)$ we have

$$
T \xi(x)=\int_{X} k(x, y) \xi(y) d \mu(y)
$$

(This is the converse of the theorem stating that every operator associated with such kernel is Hilbert-Schmidt, proved in class.)

Solution. The easiest way to go is to use the orthonormal basis for the space of HilbertSchmidt operators given in (2) below (originally I wanted to use a corollary of the spectral theorem for compact operators that gives the structure of an arbitrary compact operator, modified for the Hilbert-Schmidt operators, but the approach given here is simpler).

Let $\left(f_{j}\right)$ be an orthonormal basis for $L^{2}(X, \mu)$. Then $\left(f_{j} \odot f_{k}\right)_{j, k}$ is an orthonormal basis for the Hilbert-Schmidt operators. Thus every T can be written as $T=\sum \lambda_{j k} f_{j} \odot f_{k}$ (the convergence is in the Hilbert-Schmidt norm), with $\sum_{j k}\left|\lambda_{j k}\right|^{2}<\infty$.

Let's see what $f_{j} \odot f_{k}$ looks like for some j and k. For $g \in L^{2}(X, \mu)$ we have

$$
\left(f_{j} \odot f_{k}\right)(\xi)(x)=\int \overline{f_{j}(y)} f_{k}(x) \xi(y) d \mu(y)
$$

for almost all $x \in X$. That is $f_{j} \odot f_{k}$ corresponds to the operator with the kernel $(x, y) \mapsto$ $\overline{f_{j}(y)} f_{k}(x)$ as in Example 2.8.5 in Arveson. These functions form an orthonormal basis in $L^{2}\left(X \times X, \mu^{2}\right)$, and since $\sum\left|\lambda_{j k}\right|^{2}<\infty$, the sum $\sum_{j k} \lambda_{j k} \overline{f_{j}(y)} f_{k}(x)$ converges in $L^{2}\left(X \times X, \mu^{2}\right)$. The limit is the desired kernel k. (This can be proven e.g., by the Dominated Convergence Theorem.)
(2) (10pts) Suppose that H is a Hilbert space with orthonormal basis $\left(e_{n}\right)$ (the basis is not necessarily countable; separability of H makes no difference in this question).
(a) (3pts) Prove that the Hilbert-Schmidt operators on H form a Hilbert space, with respect to the inner product $(S \mid T)=\operatorname{Tr}\left(T^{*} S\right)$. (Most of the work has been done in class, and you can freely cite it.)

Solution. This was straightforward. ($S \mid T)$ is a sesquilinear form with $(S \mid S)=\sum_{\xi}\|S \xi\|_{2} \geq$ 0 (here ξ ranges over a fixed orthonormal basis). Also, $S \neq 0$ implies $S \xi \neq 0$ for some ξ in this basis, and $\operatorname{Tr}\left(S^{*} S\right) \geq\left(S^{*} S \xi \mid \xi\right)=\|S \xi\|_{2}>0$, so the form is strictly positive.
(b) (7pts) Find a nice orthonormal basis for the Hilbert space of Hilbert-Schmidt operators on H, and prove that it is indeed an orthonormal basis.

Solution. Suppose that $\left(\xi_{j}\right)_{j \in J}$ is an orthonormal basis for H (finite, countable, uncountable, does not matter). Define $\xi \odot \eta$ to be the rank one operator $(\xi \odot \eta)(\zeta)=(\zeta \mid \eta) \xi$. We claim that the operators $\xi_{j} \odot \xi_{k}$, for j, k in J, form an orthonormal basis for the space of Hilbert-Schmidt operators.
First check that they form an orthonormal system. A computation gives $\left(\xi_{j} \odot \xi_{k}\right)^{*}=\xi_{k} \odot \xi_{j}$ and also $\left(\xi_{j} \odot \xi_{k}\right)\left(\xi_{l} \odot \xi_{m}\right)=\left(\xi_{j} \odot \xi_{m}\right)$ if $k=l$ and 0 otherwise. Also, $\operatorname{Tr}\left(\xi_{j} \odot \xi_{k}\right)=1$ if $j=k$ and 0 otherwise.
Thus $\left(\xi_{j} \odot \xi_{k} \mid \xi_{l} \odot \xi_{m}\right)=1$ if $j=l$ and $k=m$ and 0 otherwise, as required.
It remains to check that this set is a basis for the space of Hilbert-Schmidt operators. The easiest way to do so is to compute its orthogonal. Suppose T is such that $\left(T \mid \xi_{j} \odot \xi_{k}\right)=0$ for all j and k. But

$$
\left(T \mid \xi_{j} \odot \xi_{k}\right)=\operatorname{Tr}\left(\left(\xi_{k} \odot \xi_{j}\right) T\right)=\operatorname{Tr}\left(\xi_{k} \odot T^{*} \xi_{j}\right)=\left(T \xi_{k} \mid \xi_{j}\right)
$$

This means that $T \xi_{k}=0$ for all k, and therefore $T=0$, as required.
(3) (10pts) Show that a multiplication operator M_{f} on $L^{2}(X, \mu)$ is self-adjoint and $\sigma\left(M_{f}\right) \subseteq[0, \infty)$ if and only if $\left(M_{f} \xi \mid \xi\right) \geq 0$ for all $\xi \in L^{2}(X, \mu)$.

Solution. Suppose $\sigma\left(M_{f}\right) \subseteq[0, \infty)$. Then for every $\xi \in L^{2}(X, \mu)$ we have $\left(M_{f} \xi \mid \xi\right)=$ $\int f(x)|\xi(x)|^{2} d \mu(x) \geq 0$ (because both $f(x)$ and $f(x)|\xi(x)|^{2}$ are then ≥ 0 almost everywhere). Conversely, assume that $\sigma\left(M_{f}\right) \nsubseteq[0, \infty)$. Fix $\lambda_{1} \sigma\left(M_{f}\right)$ and $\varepsilon>0$ such that $B_{\varepsilon}(\lambda) \cap[0, \infty)=\emptyset$. Let $E \subseteq X$ be a measurable, μ-positive set such that $0<\mu(E)<\infty$ and let $\xi=1_{E}$. Then $\left|\left(M_{f} \xi \mid \xi\right)-\lambda \mu(E)\right|=\left.\left|\int_{E}(f(x)-\lambda)\right| \xi(x)\right|^{2} d \mu(x)\left|\leq \int_{E}\right| f(x)-\lambda \mid d \mu(x) \leq \varepsilon$. Therefore $\left(M_{f} \xi \mid \xi\right) \in B_{\varepsilon}(\lambda)$, and in particular it is not in $[0, \infty)$.
(4) (10pts) Suppose that X is a compact Hausdorff space and F is a proper closed subset of X. Let $J_{F}=\{f \in C(X) \mid f(x)=0$ for all $x \in F\}$. This is a norm-closed, self-adjoint ideal of $C(X)$ (we know that 'self-adjoint' is redundant but never mind).
(a) (3pts) What property of F is equivalent to the assertion that the ideal J_{F} is unital? Prove your claim.

Solution. J_{F} is unital if and only if F is open (in addition to being closed). If F is open, then 1_{F} is in $C(X)$, and it is the unit for J_{F}. Conversely, if J_{F} has a unit then it has to be 1_{F}; but $1_{F} \in C(X)$ if and only if F is clopen (both closed and open).
(b) (3pts) In case J_{F} is not unital, describe the compact Hausdorff space Y such that $C(X) / J_{F}$ is isomorphic to $C(Y)$.

Solution. This is the case when F is closed, but not open. Let Y be the quotient space of X obtained by identifying all points in F to a single point. The quotient $C(X) / J_{F}$ is isomorphic to $C(Y)$.
(c) (4pts) In case J_{F} is not unital, describe the compact Hausdorff space Y such that the unitization J_{F}^{e} is isomorphic to $C(Y)$.

Solution. (Note that J_{F} is isomorphic to $C_{0}(F)$.) This is the one-point compactification of F-the space $Y=F \cup\{\infty\}$, where the copy of F is homeomorphic to F and the open neighbourhoods of ∞ are co-compact subsets of F. Then $f \in C(Y)$ if and only if the restriction of $f-f(\infty)$ to F vanishes at infinity (no pun intended), that is belongs to $C_{0}(F)$.
(5) Suppose that X is a locally compact, but not compact, Hausdorff space.
(a) (0pts) Check that $C_{b}(X)=\{f: X \rightarrow \mathbb{C} \mid f$ is continuous and bounded $\}$ is a C^{*}-algebra, and conclude that there is a compact Hausdorff space Y such that $C_{b}(X) \cong C(Y)$ (no need to submit a proof of this).
(b) (5pts) Recall that the points of a compact Hausdorff space Y are in bijective correspondence with the characters of $C(Y)$. Use this to define a natural homeomorphism from X onto a dense open subspace \tilde{X} of Y.

Solution. Since X is locally compact, by for example Tietze extension theorem continuous functions from X into $[0,1]$ separate the points of X (i.e., X is completely regular).
Send $x \in X$ to the evaluation character $\alpha_{x}, \alpha_{x}(f)=f(x)$, on $C_{b}(X)$. By the first paragraph, a net $\left(x_{\lambda}\right)$ in X converges to y in X if and only if for every $f \in C_{b}(X)$ we have $\lim _{\lambda} f\left(x_{\lambda}\right)=f(y)$. But this is equivalent to asserting that $\lim _{\lambda} \alpha_{x_{\lambda}}=\alpha_{x}$. Thus $x \mapsto \alpha_{x}$ is a homeomorphism.
To check that the image of X in Y is dense, note that $C_{b}(X)$ is a C^{*}-algebra, and therefore isomorphic to $C(Y)$. Every $f \in C(Y)$ is uniquely determined by its restriction of \tilde{X} (because $C(Y)$ is isomorphic to $C_{b}(X)$). Since Y is compact and Hausdorff, this implies \tilde{X} is dense in Y.
(c) (5pts) Identify X with \tilde{X}. Prove that every continuous function from X into $[0,1]$ has a unique extension to a continuous function from Y into $[0,1]$.

Solution. Identify X with \tilde{X}. The Gelfand map sends continuous $f: X \rightarrow[0,1]$ to $\Gamma(f) \in C(Y)$ that is a continuous extension of f. It is unique because X is dense in Y.
(d) (0 pts) The property (5c) determines Y uniquely, in the sense that if X is homeomorphic to a dense subspace of a compact Hausdorff space Z with the same property, then there is a homeomorphism $f: Y \rightarrow Z$ that is equal to the identity on X. (Again, no need to submit a proof of this.)
(6) Let X and Y be as in Question 5.
(a) (10pts) Prove that $C_{b}(X) / C_{0}(X) \cong C(Y \backslash X)$.

Solution. $C_{b}(X) / C_{0}(X)$ is, by the previous question, isomorphic to $C(Y) / C_{0}(X)$ (with X identified with \tilde{X}). Since X is locally compact, every $x \in X$ has an open neighbourhood U whose closure is included in X. By Tietze, X is an open subset of Y. We already know it is dense. The function that sends $f \in C(Y)$ to $f \upharpoonright(Y \backslash X) \in C(Y \backslash X)$ is a *-homomorphism onto (Tietze) whose kernel is $C_{0}(X)$.
(b) (0pts) Think about the cases $X=\mathbb{N}$ and $X=[0, \infty)$.
(7) (10pts) Use the GNS representation to prove that every separable C^{*}-algebra A has a faithful representation on a separable Hilbert space. (A representation π is faithful if $\operatorname{ker}(\pi)=\{0\}$. For C^{*}-algebras, a representation is faithful if and only if it is isometric.)

Solution. For example, fix a countable dense subset D of A. For each $d \in D$ fix a state $\varphi_{d} \in S(A)$ such that the associated GNS representation π_{d} satisfies $\left\|\pi_{d}(d)\right\|=\|d\|$.

Then $\pi=\bigoplus_{d} \pi_{d}$ is a faithful representation. This is because $\|\pi(d)\|=\|d\|$ for all $d \in D$, and every $a \in A$ is a limit of a convergent sequence in D. It remains to check that the associated Hilbert space is separable.

For each $d \in D$, the Hilbert space H_{d} associated with the GNS representation π_{d} is separable. This is because $\varphi_{d}\left(a^{*} a\right) \leq\left\|a^{*} a\right\|=\|a\|^{2}$ for all $a \in A$, hence $\|a\|_{2, \varphi_{d}} \leq\|a\|$. Thus (for example) the image of D is dense in H_{d}.

Therefore the space associated with π is, being a countable ℓ_{2}-sum of separable Hilbert spaces, separable.
(8) (10pts) Prove that the Calkin algebra does not have a nonzero representation on a separable Hilbert space. (Bonus 5pts: Prove that the Calkin algebra does not have a faithful representation on $\ell_{2}(\kappa)$ unless $\kappa \geq 2^{\aleph_{0}}$.)

Solution. First we need a family of infinite subsets X_{r} of \mathbb{N} that is uncountable but the intersection of any two of them is finite. (For example: Enumerate the rationals as q_{j}, for $j \in \mathbb{N}$. For each $r \in \mathbb{R} \backslash \mathbb{Q}$ let $X_{r} \subseteq \mathbb{N}$ be such that q_{j}, for $j \in X_{r}$, converges to r.)

To each X_{r} let p_{r} be the projection in ℓ_{∞} associated to $1_{X_{r}}$. Then in ℓ_{∞} / c_{0} the projections (using \dot{a} for the image of a under the quotient map) \dot{p}_{r}, for $r \in \mathbb{R} \backslash \mathbb{Q}$, are nonzero and since for $r \neq s$ the projection $p_{r} p_{s}$ has finite rank, $\dot{p}_{r} \dot{p}_{s}=0$. Now embed ℓ_{∞} / c_{0} into the Calkin algebra $\mathcal{Q}(H)=\mathcal{B}(H) / \mathcal{K}(H)$ diagonally. The image of \dot{p}_{r}, for $r \in \mathbb{R} \backslash \mathbb{Q}$, is an uncountable orthogonal family of nonzero projections. If $\pi: \mathcal{Q}(H) \rightarrow \mathcal{B}(K)$ for some Hilbert space K is a faithful representation ${ }^{1}$, then the image of this family is an uncountable family of orthogonal projections that gives uncountably many orthogonal nonzero subspaces of K. Thus K cannot be separable. (The proof shows more that the orthonormal basis for K cannot have fewer than $2^{\aleph_{0}}$ elements. Since this is the cardinality of $\mathcal{Q}(H)$, this suffices and $\mathcal{Q}(H)$ has a faithful representation on $\mathcal{B}\left(\ell^{2}\left(2^{\aleph_{0}}\right)\right)$.)

[^0]
[^0]: ${ }^{1}$ Or a nonzero representation-every representation of $\mathcal{Q}(H)$ is faithful, this is a simple C^{*}-algebra.

