Math 6462, W22. Assignment # 3 solutions
In all questions, H stands for the separable infinite-dimensional Hilbert space.

(1) (a) (4pts) Find two self-adjoint operators on H with spectrum [0, 1] and empty point-spectrum
that are not unitarily equivalent.
The solution is somewhat more detailed than necessary.

Solution. Consider strictly positive Borel measures u and v on [0,1]. Let S be Mq on
L*([0,1], ) and let T be Mg on L?([0,1],v). Since u is strictly positive, a(S) = [0, 1], and
similarly o(T) = [0,1]. We’'ll see when is there a unitary U: L*([0,1], n) — L*([0,1],v)
such that S = UTU*.

Claim 1. Suppose f, is a bounded sequence in L*°(X,u) such that f, > fny1 > 0 for
all n. Then f, converges to 0 almost everywhere if and only if SOT-lim,, My, = 0.

Proof. The forward implication uses the Dominated Convergence Theorem, as we did in
class when proving Theorem 2.6.3 (and Remark 2.6.2) in Arveson, that a nondegenerate
representation of C'(X) extends to a o-representation of B(X).

For the converse use the assumption that f, > f,.1 > 0 for all n. If f,, do not converge
to 0 almost everywhere, then there exists ¢ > 0 such that the sets A.,, = {z|f.(x) > ¢}
satisfy limsup, u(A.,) = 6 > 0. But A.,, O A, 41, and therefore A = (), A.,, satisfies
p(A) > 6. The characteristic function of A gives a vector £ such that ||M, &[] 4 0. O

By linearity, the claim implies that if f,, > f,,41 > g arereal in L>°(X, i), then f,, converges
to g almost everywhere if and only if My, SOT-converges to M,.

The conjugation by U, R — URU?*, is norm-norm continuous, but it is also SOT-SOT
continuous (proof is straightforward and a good exercise). It is also WOT-WOT continuous
(another little exercise) but we don’t need this.

For a Borel A C [0,1], consider the projection P(A) = M;, in B(L?*([0,1], 1)) and the
projection Q(A) = M, , in B(L*([0,1],v)).

Claim 2. For every Borel A C [0,1] we have UP(A)U* = Q(A).

Proof. Since UTU* = S (i.e., UM;qU* = M,q), for every polynomial and every f € C([0,1])
we have UMU* = Mj.

If A C [0,1], is closed, then 14 is the pointwise infimum of a decreasing sequence f,, of
functions in C([0,1]). Then SOT-lim, M, = P(A) and by the first claim UP(A)U* =
Q(A). By looking at the complements, the same holds for the open sets.

If A C0,1]is Gy, then it is the intersection of open sets, and using the first claim again
we have UP(A)U* = Q(A).

Every measurable A C [0, 1] is equal to a G5 set A’ modulo a null set, thus P(A) = P(A’)
and the conclusion follows for all Borel sets. O

(Digression: The claim implies that for every f € L*>(X, u) we have UMU* = M;. By
linearity, for all step functions f we have UM U* = M;. Since every f € L>(X,pu) is a
uniform limit of step functions, the conclusion follows. We don’t need this fact.)

Claim implies that u(A) = 0 if and only if ¥(A) = 0. In other words, p is absolutely
continuous with respect to v and vice versa.

Finally note that the pure point spectrum of 7" is empty if and only if x has no atoms
(i.e., every singleton has measure zero).

The question therefore reduces to finding two strictly positive measures on [0, 1], neither
one of which has atoms, such that one of them is not absolutely continuous with respect
to the other.

Take u to be the Lebesgue measure. Let P C [0, 1] be a perfect set such that p(P) = 0.

There is a strictly positive Borel probability measure vp on P with no atoms. (E.g.,
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identify P with the Cantor set. Then identify the Cantor set with the product {0, 1},
and on this space consider the product of uniform probability measures on {0, 1}.)
Then p and % W+ % [p are as required.

(b) (6pts) Find infinitely many self-adjoint operators on H with spectrum [0, 1] and empty
point-spectrum that are pairwise unitarily inequivalent.

Solution. Continuing the argument of part (a), pick infinitely many disjoint perfect pu-
null subsets P, of [0,1]. (There are infinitely many ways to find such P,; see e.g., the
solution to part (c).) On each P, choose a measure v, as in part (a). Then for example
P = %/J + %Vn are as required.

(¢) (Bonus 5pts) Find uncountably many self-adjoint operators on H with spectrum [0, 1] and
empty point-spectrum that are pairwise unitarily inequivalent.

Solution. Continuing the argument of part (b), one only needs uncountably many perfect
p-null subsets of [0,1]. For this, note that the Cantor space {0,1}" is homeomorphic to
its square ({0, 1})2. Therefore the vertical sections of this square give continuum many
disjoint perfect subsets of the Cantor space, and therefore continuum many disjoint perfect
subsets of a perfect p-null subset P of [0, 1].

Suppose that 7" is a normal operator on H with spectrum X = o(7T). By the Spectral
Theorem, there are a o-finite Borel measure' g on X and a unitary U: L*(X,pu) — H
such that 7" = UM;U*, where f is the identity function on X. By the Bounded Borel
Functional calculus, there is a o-representation m of B(X) on H.

On the other hand, by Theorem 2.1.3 in Arveson, the map ®: L>(X,u) > f — My €
B(L?(X, 1)) is an isometric isomorphism.

Let ¢: C(X) — L*°(X, ) be the identity map. Note that it is injective, since p is strictly
positive on X.

C(X) —— L=(X, )

B(H)

(2) (a) (5pts) Suppose that T is a self-adjoint operator on H such that |7? — T|| < 1/4. Prove
that there is a projection in C*(7T") (the C*-algebra generated by 7).

Solution. (This one was trivial as one could take the projection to be 0; I should have e.g.,
added the assumption that {0,1} C o(7T") and required that the projection is nontrivial,
i.e., neither 0 nor 1. This is what the proof shows.) The Spectral Theorem easily implies
that C*(7,1) = C(o(T)). Since T' = T*, the Continuous Functional Calculus implies
o(T) CR.2
Since ||T—T?|| < 1/4, and (again by the Continuous Functional Calculus, CFC) ||T—T7|| =
sup{|t —t?| : t € o(T)}, we have 1/2 ¢ o(T). Let g: o(T) — {0, 1} be defined by g(t) =0
ift <1/2and g(t) = 1ift > 1/2. Since 1/2 ¢ o(T'), g is continuous on ¢(7), and therefore
(CFC again) P = f(T) € C*(T,1). By CFC, ¢g?> = g implies P* = P and g = g implies
P = P*, hence P is a projection.

(b) (5pts) Prove that there is a decreasing f: (0,1/2) — (0, 1] that satisfies lim;_, f(¢) = 0
and such that if 7" is a self-adjoint operator on H and ||T? — T'|| = € < 1/2, then there is
a projection P in C*(7T') such that ||[P —T|| < f(e).

IThere is a probability measure with the same property; this is an exercise.
2We are shooting a fly with a cannon; proving this from the scratch is a nice exercise.



(3)

3
Solution. This is a refinement of the solution to (a). Fix 0 < & < 1/2 and that ||T—T7?|| =
e. The solution to the inequality |t — t?| < € is

( 1 —+/1+4e 1—\/1—45>U<1+\/1—45 1—|—\/1—|—4€)
2 ’ 2 2 ’ 2 '

Let
f(€) = min

By CFC, with g as in the first part, ||T"— g(T)|| = f(e). Clearly lim. o+ f(¢) = 0, as
required. (One could work out a nicer-looking bound, but this was not the point of the
exercise.)
(Continuity of the continuous functional calculus.) Fix a continuous function f: C — C.
For a normal operator 7" on H, f(T) is defined by the (obvious extension of) the continuous

functional calculus. Prove that if 7}, and 7" are normal operators such that lim, |7, — T|| =0
then lim, || f(T,) — f(T)| = 0.

1++1+4e
2

Solution. First we prove that this is true when f(z) = 2™ for some n > 1. Fix n. We have
(writing T° = 1)
n—1
-8 =) ST - 81"
=0
and therefore || 7" — S"|| < Z;.:Ol IS = TS| 7). If T is normal, then ||T7] = ||T|)/,
and therefore with M = max(||S]|, ||T||) we have |T™ — S™|| < nM" || T — S||.

Now suppose ||T;, — T|| — 0 as m — oo. Then ||T,,]] — [|T]|, and in particular M =
SUp,, MaX;j<, ||| < oo. By the above calculations ||T7 — T"|| < nM™ Y|T,, — T|| — 0 as
n— 0.

Also, | T5, = T*[| = [T = T||-

Let p(x) be a complex *-polynomial such that z and x* commute, hence p(x) is a complex
linear combination of terms of the form z™(x*)* for m > 0 and k > 0. By the continuity of the
addition and scalar multiplication, ||7,, — T'|| — 0 implies ||p(T},) — p(T)| — 0.

Finally, let X denote the closed disk of radius M (as above) centered at 0. Then o(7,,) C X
for all n. By the Stone-Weierstrass theorem, the algebra of complex *-polynomials is norm-
dense in C'(X). Fix f € C(X) and let p,,(x) be a sequence of polynomials that converges to
f uniformly on X. Then lim,, ||pm(75) — pm(T)|| = 0. By the Continuous Functional Calculus,
limy, ||pm(T) — f(T)] = 0, and lim,, ||p(T,,) — f(T5,)]| = 0 for all n. Choosing m(n) — oo such
that both [ (Ta)— F(Ta)| < 1/ and ey (T) —F (D)) < 1/n for all m, [[£(Ty) — F(T)]| > 0
follows.

Suppose that X and Y are compact Hausdorff spaces and that ®: C(X) — C(Y) is a unital
homomorphism (& is not assumed to be continuous).
(a) Prove that there is a function ®: Y — X such that (®(f))(y) = f(®(y)) for all y € Y.

Solution. Since ®: C'(X) — C(Y) is a bounded linear operator, we can consider its
transpose ®*: C(Y)* — C(X)* such that for all f € C(X) and ¢ € C(Y)* we have

(@(f), ¢) = (f, 2*())-

Let ® be the restriction of ® to Sp(C(Y)) (identified with Y'). Then (using the definitions)
for y € Y and f € C(X) we have

O(f)(y) = (2(f),y) = (f,2(¥)) = f(2(y))

as required.
(b) Prove that ® is continuous.



Solution. The transpose of a bounded linear operator is continuous in the weak operator
topology.
(c) Prove that ®(f*) = ®(f)* for all f € C(X).

Solution. For every y € Y we have ®(f*)(y) = f*(®(y)) = ®(f)(y)) = ®(f)(y). Since
this is true for all y € Y, the identify follows.

(5) This is a continuation of Question (4), with ®, X, Y, and ® as before. In each of the following,
first complete the sentence by inserting the right word (a property of a continuous map) and
prove the assertion obtained in this way.

(a) Prove that ® is an isomorphism if and only if ® is. . . .

Solution. The magic word is ‘homeomorphism’. Since ® is an isomorphism iff it is injec-
tive and surjective, and @ is a homeomorphism iff it is injective and surjective, this will
follow from the other two parts of the question.

(b) Prove that ker(®) = {0} if and only if ® is. ...

Solution. The magic word is ‘surjective’. Suppose @ is surjective. If f € C (X) is nonzero,
fix y € Y such that f(®(y)) # 0. Then ®(f)(y) # 0. Since f was arbitrary, ker(®) = {0}.
Conversely, if ® is not surjective, then X \ ®[V] is a nonempty open set. (Since Y is
compact, its image is closed.) Fix 2 € X \ ®[Y]. By the Tietze Extension Theorem find
f € C(X) that vanishes on ®[Y] such that f(z) = 1. Then ®(f) = 0, hence ker(®) is
nontrivial.

(¢) Prove that ® is surjective if and only if ® is. . . .

Solution. The magic word is ‘injective’. Suppose ® is injective. By the compactness of
Y and of Xy = ®[Y], ® is a homeomorphism between Xy and Y. For h € C(Y) define
fo: Xo — Cby fo = ho® L. Then f,is continuous, and by the Tietze Extension Theorem
it has a continuous extension to f € C'(X). Then ®(f) = fo ® = h.
Conversely, suppose @ is not injective and fix y # 3’ in Y such that <i>(y) = <f>(y’ ). Then
for every f € C(X), ®(f)(y) = fo®(y) = fod(y) = ®(f)(y/). Since C(Y) separates the
points of Y and ®[C(X)] does not, ® is not surjective.
(6) Suppose that 7 is a representation of a Banach *-algebra A on H. Prove that the following are
equivalent.
(a) Every nonzero £ € H is cyclic for .
(b) The only closed subspaces of H that are invariant® for 7(a) for every a € A are {0} and H.
(c) If T € B(H) commutes with 7(a) for all a € A, then T is a scalar multiple of the identity.

Solution. A nontrivial invariant subspace cannot contain a cyclic vector (and it contains
nonzero vectors). This easily implies that (6a) and (6b) are equivalent.

(6¢) implies (6b): If K is a nontrivial closed invariant subspace, then the ortohogonal pro-
jection to K is an invariant nonscalar operator.

(6b) implies (6¢): This is the only nontrivial implication. Suppose that (6¢) fails. Let A be
the subalgebra of B(H) consisting of all operators that commute with 7(a) for all a € A.* A
routine calculation shows that A is WOT-closed, and therefore a von Neumann algebra.

If all self-adjoint operators in A were scalar, then every operator in A would be scalar. THis
is because T = Ty + 11, for self-adjoint T, and 7. We can therefore fix a self-adjoint, non-
scalar, T' € w[A]'. Thus ¢(T) C R and it has more than one point. Let U be a bounded open
interval in R such that both U No(T) and o(T) \ U are nonempty. Let X = o(T) N U. Let
fn: R — [0, 1] be a sequence of continuous functions on converging to xy pointwise (Tietze).

By the Bounded Borel Functional Calculus, let S = xx (7).

3A subspace K of H is invariant for T if T[K] C K.
4This is the relative commutant of m[A], denoted by m[A]’; this is not used in the proof.
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(7) Suppose that T € B(H) is a normal operator. Prove that the range of B(co(7")) under the

Bounded Borel Functional Calculus associated to 7' is a von Neumann algebra.
There is some overlap with the solution to Question (1).

Solution. Let 7: B(o(T)) — B(H) be the o-representation given by the Bounded Borel Func-
tional Calculus. Denote its range by N. Meanwhile, by the Spectral Theorem we may assume
that H = L*(X,u) and T € L>(X, u) for some probability measure space X. We will write

A= L>%(X, p).

Let P be the spectral measure associated with 7 and let Borel(X) denote the o-algebra of
Borel subsets of o(T"). Then for every A € B we have P(A) € A.

This fact requires a proof. We will prove that the family F = {A € Borel(o(T))|P(A) € A}
includes all open sets and is closed under complements and countable unions. We will use the
fact that if (S,) is a sequence in A and S = SOT-1im S,,, then S € A.

If A is open, then the characteristic function 14 € B(X) is a pointwise limit of continuous
functions. Since 7 is a o-representation, P(A) € A. If A =, A,, and P(A,) € A then again
because 7 is a o-representation P(A) € A. Clearly if P(A) € A then P(C\ A) =1— P(A) is
in A.

Fix w(f) € N. Then f is a pointwise limit of step functions f,,. Every step function f, is
a linear combination of characteristic functions 14, and therefore by the previous paragraph
7(fn) € A. Since 7 is a o-representation, 7(f) € A. Thus 7[B(X)] C A.

Almost there. Fix S in the SOT-closure of N. We need to prove that S € N.

We claim that S commutes with every element of A. This is ‘obvious’ but let’s prove it. For
T € B(H) the function Fp(X) — TX — XT is SOT-continuous. Then Fr vanishes on A if and
only if T' commutes with A.> Let (T)) be a net in N such that S = SOT-limTy. For every
T € N, Fr vanishes on A because N C A and A is abelian. Thus for every R € A we have
Fs(R) = SOT-lim Fr, (R) = 0, and Fs vanishes on A.

For a measurable A C X write 4 for the characteristic function of A considered as a vector
in L2(X, )% and write Q4 for the same function considered as a projection in A.

Fix measurable A C B C X. Then

QaSEs = SQalp = S¢a.
We claim that n = S&x is in L°(X, p). (It is clearly in L*(X, u).) Otherwise, for every m € N
the set
A(m) = {z € X|[n(z)| = K}

is not p-null. But (1) implies S{aum) = Paen)n, thus [[S€aumyll2 > m[[€ammll2 and ||S]| > m for
all m; contradiction.

Thus n € A. We claim that S = M, (the multiplication operator). For measurable A C X
we have SQ4 = M,Q4 by (1). By linearity, this equality also holds for linear combinations of
projections in A.

SThis is also equivalent to 7' € A, but we don’t need this.

6Then &4 € L?(X, j1) since we are assuming that p is a probability measure, which is not a loss of generality.



