Math 6462, W22. Assignment \# 3 solutions

In all questions, H stands for the separable infinite-dimensional Hilbert space.
(a) (4pts) Find two self-adjoint operators on H with spectrum $[0,1]$ and empty point-spectrum that are not unitarily equivalent.
The solution is somewhat more detailed than necessary.
Solution. Consider strictly positive Borel measures μ and ν on $[0,1]$. Let S be $M_{\text {id }}$ on $L^{2}([0,1], \mu)$ and let T be M_{id} on $L^{2}([0,1], \nu)$. Since μ is strictly positive, $\sigma(S)=[0,1]$, and similarly $\sigma(T)=[0,1]$. We'll see when is there a unitary $U: L^{2}([0,1], \mu) \rightarrow L^{2}([0,1], \nu)$ such that $S=U T U^{*}$.

Claim 1. Suppose f_{n} is a bounded sequence in $L^{\infty}(X, \mu)$ such that $f_{n} \geq f_{n+1} \geq 0$ for all n. Then f_{n} converges to 0 almost everywhere if and only if SOT- $\lim _{n} M_{f_{n}}=0$.
Proof. The forward implication uses the Dominated Convergence Theorem, as we did in class when proving Theorem 2.6.3 (and Remark 2.6.2) in Arveson, that a nondegenerate representation of $C(X)$ extends to a σ-representation of $\mathcal{B}(X)$.
For the converse use the assumption that $f_{n} \geq f_{n+1} \geq 0$ for all n. If f_{n} do not converge to 0 almost everywhere, then there exists $\varepsilon>0$ such that the sets $A_{\varepsilon, n}=\left\{x \mid f_{n}(x) \geq \varepsilon\right\}$ satisfy $\lim \sup _{n} \mu\left(A_{\varepsilon, n}\right)=\delta>0$. But $A_{\varepsilon, n} \supseteq A_{\varepsilon, n+1}$, and therefore $A=\bigcap_{n} A_{\varepsilon, n}$ satisfies $\mu(A) \geq \delta$. The characteristic function of A gives a vector ξ such that $\left\|M_{f_{n}} \xi\right\| \nrightarrow 0$.

By linearity, the claim implies that if $f_{n} \geq f_{n+1} \geq g$ are real in $L^{\infty}(X, \mu)$, then f_{n} converges to g almost everywhere if and only if $M_{f_{n}}$ SOT-converges to M_{g}.
The conjugation by $U, R \mapsto U R U^{*}$, is norm-norm continuous, but it is also SOT-SOT continuous (proof is straightforward and a good exercise). It is also WOT-WOT continuous (another little exercise) but we don't need this.
For a Borel $A \subseteq[0,1]$, consider the projection $P(A)=M_{1_{A}}$ in $\mathcal{B}\left(L^{2}([0,1], \mu)\right)$ and the projection $Q(A)=M_{1_{A}}$ in $\mathcal{B}\left(L^{2}([0,1], \nu)\right)$.

Claim 2. For every Borel $A \subseteq[0,1]$ we have $U P(A) U^{*}=Q(A)$.
Proof. Since $U T U^{*}=S$ (i.e., $U M_{\mathrm{id}} U^{*}=M_{\mathrm{id}}$), for every polynomial and every $f \in C([0,1])$ we have $U M_{f} U^{*}=M_{f}$.
If $A \subseteq[0,1]$, is closed, then 1_{A} is the pointwise infimum of a decreasing sequence f_{n} of functions in $C([0,1])$. Then SOT- $\lim _{n} M_{f_{n}}=P(A)$ and by the first claim $U P(A) U^{*}=$ $Q(A)$. By looking at the complements, the same holds for the open sets.
If $A \subseteq[0,1]$ is G_{δ}, then it is the intersection of open sets, and using the first claim again we have $U P(A) U^{*}=Q(A)$.
Every measurable $A \subseteq[0,1]$ is equal to a G_{δ} set A^{\prime} modulo a null set, thus $P(A)=P\left(A^{\prime}\right)$ and the conclusion follows for all Borel sets.
(Digression: The claim implies that for every $f \in L^{\infty}(X, \mu)$ we have $U M_{f} U^{*}=M_{f}$. By linearity, for all step functions f we have $U M_{f} U^{*}=M_{f}$. Since every $f \in L^{\infty}(X, \mu)$ is a uniform limit of step functions, the conclusion follows. We don't need this fact.)
Claim implies that $\mu(A)=0$ if and only if $\nu(A)=0$. In other words, μ is absolutely continuous with respect to ν and vice versa.
Finally note that the pure point spectrum of T is empty if and only if μ has no atoms (i.e., every singleton has measure zero).

The question therefore reduces to finding two strictly positive measures on $[0,1]$, neither one of which has atoms, such that one of them is not absolutely continuous with respect to the other.
Take μ to be the Lebesgue measure. Let $P \subseteq[0,1]$ be a perfect set such that $\mu(P)=0$. There is a strictly positive Borel probability measure ν_{P} on P with no atoms. (E.g.,
identify P with the Cantor set. Then identify the Cantor set with the product $\{0,1\}^{\mathbb{N}}$, and on this space consider the product of uniform probability measures on $\{0,1\}$.) Then μ and $\frac{1}{2} \mu+\frac{1}{2} \mu_{P}$ are as required.
(b) (6 pts) Find infinitely many self-adjoint operators on H with spectrum $[0,1]$ and empty point-spectrum that are pairwise unitarily inequivalent.

Solution. Continuing the argument of part (a), pick infinitely many disjoint perfect μ null subsets P_{n} of $[0,1]$. (There are infinitely many ways to find such P_{n}; see e.g., the solution to part (c).) On each P_{n} choose a measure ν_{n} as in part (a). Then for example $\mu_{n}=\frac{1}{2} \mu+\frac{1}{2} \nu_{n}$ are as required.
(c) (Bonus 5pts) Find uncountably many self-adjoint operators on H with spectrum $[0,1]$ and empty point-spectrum that are pairwise unitarily inequivalent.

Solution. Continuing the argument of part (b), one only needs uncountably many perfect μ-null subsets of $[0,1]$. For this, note that the Cantor space $\{0,1\}^{\mathbb{N}}$ is homeomorphic to its square $\left(\{0,1\}^{\mathbb{N}}\right)^{2}$. Therefore the vertical sections of this square give continuum many disjoint perfect subsets of the Cantor space, and therefore continuum many disjoint perfect subsets of a perfect μ-null subset P of $[0,1]$.
Suppose that T is a normal operator on H with spectrum $X=\sigma(T)$. By the Spectral Theorem, there are a σ-finite Borel measure ${ }^{1} \mu$ on X and a unitary $U: L^{2}(X, \mu) \rightarrow H$ such that $T=U M_{f} U^{*}$, where f is the identity function on X. By the Bounded Borel Functional calculus, there is a σ-representation π of $B(X)$ on H.
On the other hand, by Theorem 2.1.3 in Arveson, the map $\Phi: L^{\infty}(X, \mu) \ni f \mapsto M_{f} \in$ $\mathcal{B}\left(L^{2}(X, \mu)\right)$ is an isometric isomorphism.
Let $\iota: C(X) \rightarrow L^{\infty}(X, \mu)$ be the identity map. Note that it is injective, since μ is strictly positive on X.

(2) (a) (5pts) Suppose that T is a self-adjoint operator on H such that $\left\|T^{2}-T\right\|<1 / 4$. Prove that there is a projection in $\mathrm{C}^{*}(T)$ (the C^{*}-algebra generated by T).

Solution. (This one was trivial as one could take the projection to be 0; I should have e.g., added the assumption that $\{0,1\} \subseteq \sigma(T)$ and required that the projection is nontrivial, i.e., neither 0 nor 1 . This is what the proof shows.) The Spectral Theorem easily implies that $\mathrm{C}^{*}(T, 1) \cong C(\sigma(T))$. Since $T=T^{*}$, the Continuous Functional Calculus implies $\sigma(T) \subseteq \mathbb{R}$. ${ }^{2}$
Since $\left\|T-T^{2}\right\|<1 / 4$, and (again by the Continuous Functional Calculus, CFC) $\left\|T-T^{2}\right\|=$ $\sup \left\{\left|t-t^{2}\right|: t \in \sigma(T)\right\}$, we have $1 / 2 \notin \sigma(T)$. Let $g: \sigma(T) \rightarrow\{0,1\}$ be defined by $g(t)=0$ if $t<1 / 2$ and $g(t)=1$ if $t>1 / 2$. Since $1 / 2 \notin \sigma(T), g$ is continuous on $\sigma(T)$, and therefore (CFC again) $P=f(T) \in \mathrm{C}^{*}(T, 1)$. By CFC, $g^{2}=g$ implies $P^{*}=P$ and $g=\bar{g}$ implies $P=P^{*}$, hence P is a projection.
(b) (5pts) Prove that there is a decreasing $f:(0,1 / 2) \rightarrow(0,1]$ that satisfies $\lim _{t \rightarrow 0} f(t)=0$ and such that if T is a self-adjoint operator on H and $\left\|T^{2}-T\right\|=\varepsilon<1 / 2$, then there is a projection P in $\mathrm{C}^{*}(T)$ such that $\|P-T\| \leq f(\varepsilon)$.

[^0]Solution. This is a refinement of the solution to (a). Fix $0<\varepsilon<1 / 2$ and that $\left\|T-T^{2}\right\| \stackrel{3}{=}$ ε. The solution to the inequality $\left|t-t^{2}\right| \leq \varepsilon$ is

$$
\left(-\frac{1-\sqrt{1+4 \varepsilon}}{2}, \frac{1-\sqrt{1-4 \varepsilon}}{2}\right) \cup\left(\frac{1+\sqrt{1-4 \varepsilon}}{2}, \frac{1+\sqrt{1+4 \varepsilon}}{2}\right) .
$$

Let

$$
f(\varepsilon)=\min \left|\frac{1 \pm \sqrt{1 \pm 4 \varepsilon}}{2}\right|
$$

By CFC, with g as in the first part, $\|T-g(T)\|=f(\varepsilon)$. Clearly $\lim _{\varepsilon \rightarrow 0^{+}} f(\varepsilon)=0$, as required. (One could work out a nicer-looking bound, but this was not the point of the exercise.)
(3) (Continuity of the continuous functional calculus.) Fix a continuous function $f: \mathbb{C} \rightarrow \mathbb{C}$. For a normal operator T on $H, f(T)$ is defined by the (obvious extension of) the continuous functional calculus. Prove that if T_{n} and T are normal operators such that $\lim _{n}\left\|T_{n}-T\right\|=0$ then $\lim _{n}\left\|f\left(T_{n}\right)-f(T)\right\|=0$.

Solution. First we prove that this is true when $f(x)=x^{n}$ for some $n \geq 1$. Fix n. We have (writing $T^{0}=1$)

$$
T^{n}-S^{n}=\sum_{j=0}^{n-1} S^{j}(T-S) T^{n-1-j}
$$

and therefore $\left\|T^{n}-S^{n}\right\| \leq \sum_{j=0}^{n-1}\|S-T\|\left\|S^{j}\right\|\left\|T^{n-1-j}\right\|$. If T is normal, then $\left\|T^{j}\right\|=\|T\|^{j}$, and therefore with $M=\max (\|S\|,\|T\|)$ we have $\left\|T^{n}-S^{n}\right\| \leq n M^{n-1}\|T-S\|$.

Now suppose $\left\|T_{m}-T\right\| \rightarrow 0$ as $m \rightarrow \infty$. Then $\left\|T_{m}\right\| \rightarrow\|T\|$, and in particular $M=$ $\sup _{m} \max _{j<n}\left\|T_{m}\right\|<\infty$. By the above calculations $\left\|T_{m}^{n}-T^{n}\right\|<n M^{n-1}\left\|T_{m}-T\right\| \rightarrow 0$ as $n \rightarrow \infty$.

Also, $\left\|T_{m}^{*}-T^{*}\right\|=\left\|T_{m}-T\right\|$.
Let $p(x)$ be a complex *-polynomial such that x and x^{*} commute, hence $p(x)$ is a complex linear combination of terms of the form $x^{m}\left(x^{*}\right)^{k}$ for $m \geq 0$ and $k \geq 0$. By the continuity of the addition and scalar multiplication, $\left\|T_{n}-T\right\| \rightarrow 0$ implies $\left\|p\left(T_{n}\right)-p(T)\right\| \rightarrow 0$.

Finally, let X denote the closed disk of radius M (as above) centered at 0 . Then $\sigma\left(T_{n}\right) \subseteq X$ for all n. By the Stone-Weierstrass theorem, the algebra of complex ${ }^{*}$-polynomials is normdense in $C(X)$. Fix $f \in C(X)$ and let $p_{m}(x)$ be a sequence of polynomials that converges to f uniformly on X. Then $\lim _{n}\left\|p_{m}\left(T_{n}\right)-p_{m}(T)\right\|=0$. By the Continuous Functional Calculus, $\lim _{m}\left\|p_{m}(T)-f(T)\right\|=0$, and $\lim _{m}\left\|p_{m}\left(T_{n}\right)-f\left(T_{n}\right)\right\|=0$ for all n. Choosing $m(n) \rightarrow \infty$ such that both $\left\|p_{m(n)}\left(T_{n}\right)-f\left(T_{n}\right)\right\|<1 / n$ and $\left\|p_{m(n)}(T)-f(T)\right\|<1 / n$ for all $n,\left\|f\left(T_{n}\right)-f(T)\right\| \rightarrow 0$ follows.
(4) Suppose that X and Y are compact Hausdorff spaces and that $\Phi: C(X) \rightarrow C(Y)$ is a unital homomorphism (Φ is not assumed to be continuous).
(a) Prove that there is a function $\tilde{\Phi}: Y \rightarrow X$ such that $(\Phi(f))(y)=f(\tilde{\Phi}(y))$ for all $y \in Y$.

Solution. Since $\Phi: C(X) \rightarrow C(Y)$ is a bounded linear operator, we can consider its transpose $\Phi^{*}: C(Y)^{*} \rightarrow C(X)^{*}$ such that for all $f \in C(X)$ and $\varphi \in C(Y)^{*}$ we have

$$
(\Phi(f), \varphi)=\left(f, \Phi^{*}(\varphi)\right)
$$

Let $\tilde{\Phi}$ be the restriction of Φ to $\operatorname{Sp}(C(Y))$ (identified with Y). Then (using the definitions) for $y \in Y$ and $f \in C(X)$ we have

$$
\Phi(f)(y)=(\Phi(f), y)=(f, \tilde{\Phi}(y))=f(\tilde{\Phi}(y))
$$

as required.
(b) Prove that $\tilde{\Phi}$ is continuous.

Solution. The transpose of a bounded linear operator is continuous in the weak operator topology.
(c) Prove that $\Phi\left(f^{*}\right)=\Phi(f)^{*}$ for all $f \in C(X)$.

Solution. For every $y \in Y$ we have $\Phi\left(f^{*}\right)(y)=f^{*}(\tilde{\Phi}(y))=\overline{\tilde{\Phi}(f)(y))}=\overline{\Phi(f)(y)}$. Since this is true for all $y \in Y$, the identify follows.
(5) This is a continuation of Question (4), with Φ, X, Y, and $\tilde{\Phi}$ as before. In each of the following, first complete the sentence by inserting the right word (a property of a continuous map) and prove the assertion obtained in this way.
(a) Prove that Φ is an isomorphism if and only if $\tilde{\Phi}$ is....

Solution. The magic word is 'homeomorphism'. Since Φ is an isomorphism iff it is injective and surjective, and $\tilde{\Phi}$ is a homeomorphism iff it is injective and surjective, this will follow from the other two parts of the question.
(b) Prove that $\operatorname{ker}(\Phi)=\{0\}$ if and only if $\tilde{\Phi}$ is. .

Solution. The magic word is 'surjective'. Suppose $\tilde{\Phi}$ is surjective. If $f \in C(X)$ is nonzero, fix $y \in Y$ such that $f(\tilde{\Phi}(y)) \neq 0$. Then $\tilde{\Phi}(f)(y) \neq 0$. Since f was arbitrary, $\operatorname{ker}(\tilde{\Phi})=\{0\}$. Conversely, if $\tilde{\Phi}$ is not surjective, then $X \backslash \tilde{\Phi}[Y]$ is a nonempty open set. (Since Y is compact, its image is closed.) Fix $x \in X \backslash \tilde{\Phi}[Y]$. By the Tietze Extension Theorem find $f \in C(X)$ that vanishes on $\tilde{\Phi}[Y]$ such that $f(x)=1$. Then $\Phi(f)=0$, hence $\operatorname{ker}(\Phi)$ is nontrivial.
(c) Prove that Φ is surjective if and only if $\tilde{\Phi}$ is....

Solution. The magic word is 'injective'. Suppose $\tilde{\Phi}$ is injective. By the compactness of Y and of $X_{0}=\tilde{\Phi}[Y], \tilde{\Phi}$ is a homeomorphism between X_{0} and Y. For $h \in C(Y)$ define $f_{0}: X_{0} \rightarrow \mathbb{C}$ by $f_{0}=h \circ \tilde{\Phi}^{-1}$. Then f_{0} is continuous, and by the Tietze Extension Theorem it has a continuous extension to $f \in C(X)$. Then $\Phi(f)=f \circ \tilde{\Phi}=h$.
Conversely, suppose $\tilde{\Phi}$ is not injective and fix $y \neq y^{\prime}$ in Y such that $\tilde{\Phi}(y)=\tilde{\Phi}\left(y^{\prime}\right)$. Then for every $f \in C(X), \Phi(f)(y)=f \circ \tilde{\Phi}(y)=f \circ \tilde{\Phi}\left(y^{\prime}\right)=\Phi(f)\left(y^{\prime}\right)$. Since $C(Y)$ separates the points of Y and $\Phi[C(X)]$ does not, Φ is not surjective.
(6) Suppose that π is a representation of a Banach ${ }^{*}$-algebra A on H. Prove that the following are equivalent.
(a) Every nonzero $\xi \in H$ is cyclic for π.
(b) The only closed subspaces of H that are invariant ${ }^{3}$ for $\pi(a)$ for every $a \in A$ are $\{0\}$ and H.
(c) If $T \in \mathcal{B}(H)$ commutes with $\pi(a)$ for all $a \in A$, then T is a scalar multiple of the identity.

Solution. A nontrivial invariant subspace cannot contain a cyclic vector (and it contains nonzero vectors). This easily implies that (6a) and (6b) are equivalent.
(6c) implies (6b): If K is a nontrivial closed invariant subspace, then the ortohogonal projection to K is an invariant nonscalar operator.
(6b) implies (6c): This is the only nontrivial implication. Suppose that (6c) fails. Let A be the subalgebra of $\mathcal{B}(H)$ consisting of all operators that commute with $\pi(a)$ for all $a \in A .{ }^{4}$ A routine calculation shows that A is WOT-closed, and therefore a von Neumann algebra.

If all self-adjoint operators in A were scalar, then every operator in A would be scalar. THis is because $T=T_{0}+i T_{1}$, for self-adjoint T_{0} and T_{1}. We can therefore fix a self-adjoint, nonscalar, $T \in \pi[A]^{\prime}$. Thus $\sigma(T) \subseteq \mathbb{R}$ and it has more than one point. Let U be a bounded open interval in \mathbb{R} such that both $U \cap \sigma(T)$ and $\sigma(T) \backslash U$ are nonempty. Let $X=\sigma(T) \cap U$. Let $f_{n}: \mathbb{R} \rightarrow[0,1]$ be a sequence of continuous functions on converging to χ_{U} pointwise (Tietze).

By the Bounded Borel Functional Calculus, let $S=\chi_{X}(T)$.

[^1](7) Suppose that $T \in \mathcal{B}(H)$ is a normal operator. Prove that the range of $\mathcal{B}(\sigma(T))$ under the Bounded Borel Functional Calculus associated to T is a von Neumann algebra.

There is some overlap with the solution to Question (1).
Solution. Let $\pi: \mathcal{B}(\sigma(T)) \rightarrow \mathcal{B}(H)$ be the σ-representation given by the Bounded Borel Functional Calculus. Denote its range by N. Meanwhile, by the Spectral Theorem we may assume that $H=L^{2}(X, \mu)$ and $T \in L^{\infty}(X, \mu)$ for some probability measure space X. We will write

$$
\mathcal{A}=L^{\infty}(X, \mu)
$$

Let P be the spectral measure associated with π and let $\operatorname{Borel}(X)$ denote the σ-algebra of Borel subsets of $\sigma(T)$. Then for every $A \in \mathcal{B}$ we have $P(A) \in \mathcal{A}$.

This fact requires a proof. We will prove that the family $\mathcal{F}=\{A \in \operatorname{Borel}(\sigma(T)) \mid P(A) \in \mathcal{A}\}$ includes all open sets and is closed under complements and countable unions. We will use the fact that if $\left(S_{n}\right)$ is a sequence in \mathcal{A} and $S=\operatorname{SOT}-\lim S_{n}$, then $S \in \mathcal{A}$.

If A is open, then the characteristic function $1_{A} \in \mathcal{B}(X)$ is a pointwise limit of continuous functions. Since π is a σ-representation, $P(A) \in \mathcal{A}$. If $A=\bigcup_{n} A_{n}$, and $P\left(A_{n}\right) \in \mathcal{A}$ then again because π is a σ-representation $P(A) \in \mathcal{A}$. Clearly if $P(A) \in \mathcal{A}$ then $P(\mathbb{C} \backslash A)=1-P(A)$ is in \mathcal{A}.

Fix $\pi(f) \in N$. Then f is a pointwise limit of step functions f_{n}. Every step function f_{n} is a linear combination of characteristic functions 1_{A}, and therefore by the previous paragraph $\pi\left(f_{n}\right) \in \mathcal{A}$. Since π is a σ-representation, $\pi(f) \in \mathcal{A}$. Thus $\pi[\mathcal{B}(X)] \subseteq \mathcal{A}$.

Almost there. Fix S in the SOT-closure of N. We need to prove that $S \in N$.
We claim that S commutes with every element of \mathcal{A}. This is 'obvious' but let's prove it. For $T \in \mathcal{B}(H)$ the function $F_{T}(X) \mapsto T X-X T$ is SOT-continuous. Then F_{T} vanishes on \mathcal{A} if and only if T commutes with $\mathcal{A} .{ }^{5}$ Let $\left(T_{\lambda}\right)$ be a net in N such that $S=$ SOT- $\lim T_{\lambda}$. For every $T \in N, F_{T}$ vanishes on \mathcal{A} because $N \subseteq \mathcal{A}$ and \mathcal{A} is abelian. Thus for every $R \in \mathcal{A}$ we have $F_{S}(R)=$ SOT- $\lim F_{T_{\lambda}}(R)=0$, and F_{S} vanishes on \mathcal{A}.

For a measurable $A \subseteq X$ write ξ_{A} for the characteristic function of A considered as a vector in $L^{2}(X, \mu)^{6}$ and write Q_{A} for the same function considered as a projection in \mathcal{A}.

Fix measurable $A \subseteq B \subseteq X$. Then

$$
Q_{A} S \xi_{B}=S Q_{A} \xi_{B}=S \xi_{A}
$$

We claim that $\eta=S \xi_{X}$ is in $L^{\infty}(X, \mu)$. (It is clearly in $L^{2}(X, \mu)$.) Otherwise, for every $m \in \mathbb{N}$ the set

$$
A(m)=\{x \in X| | \eta(x) \mid \geq K\}
$$

is not μ-null. But (1) implies $S \xi_{A(m)}=P_{A(m)} \eta$, thus $\left\|S \xi_{A(m)}\right\|_{2} \geq m\left\|\xi_{A(m)}\right\|_{2}$ and $\|S\| \geq m$ for all m; contradiction.

Thus $\eta \in \mathcal{A}$. We claim that $S=M_{f}$ (the multiplication operator). For measurable $A \subseteq X$ we have $S Q_{A}=M_{\eta} Q_{A}$ by (1). By linearity, this equality also holds for linear combinations of projections in \mathcal{A}.

[^2]
[^0]: ${ }^{1}$ There is a probability measure with the same property; this is an exercise.
 ${ }^{2}$ We are shooting a fly with a cannon; proving this from the scratch is a nice exercise.

[^1]: ${ }^{3}$ A subspace K of H is invariant for T if $T[K] \subseteq K$.
 ${ }^{4}$ This is the relative commutant of $\pi[A]$, denoted by $\pi[A]^{\prime}$; this is not used in the proof.

[^2]: ${ }^{5}$ This is also equivalent to $T \in \mathcal{A}$, but we don't need this.
 ${ }^{6}$ Then $\xi_{A} \in L^{2}(X, \mu)$ since we are assuming that μ is a probability measure, which is not a loss of generality.

