Math 6462, W22. Assignment # 3 solutions

In all questions, H stands for the separable infinite-dimensional Hilbert space.

(1) (a) (4pts) Find two self-adjoint operators on H with spectrum [0, 1] and empty point-spectrum that are not unitarily equivalent.

The solution is somewhat more detailed than necessary.

Solution. Consider strictly positive Borel measures μ and ν on [0, 1]. Let S be M_{id} on $L^2([0, 1], \mu)$ and let T be M_{id} on $L^2([0, 1], \nu)$. Since μ is strictly positive, $\sigma(S) = [0, 1]$, and similarly $\sigma(T) = [0, 1]$. We'll see when is there a unitary $U: L^2([0, 1], \mu) \to L^2([0, 1], \nu)$ such that $S = UTU^*$.

Claim 1. Suppose f_n is a bounded sequence in $L^{\infty}(X, \mu)$ such that $f_n \ge f_{n+1} \ge 0$ for all n. Then f_n converges to 0 almost everywhere if and only if SOT-lim_n $M_{f_n} = 0$.

Proof. The forward implication uses the Dominated Convergence Theorem, as we did in class when proving Theorem 2.6.3 (and Remark 2.6.2) in Arveson, that a nondegenerate representation of C(X) extends to a σ -representation of $\mathcal{B}(X)$.

For the converse use the assumption that $f_n \ge f_{n+1} \ge 0$ for all n. If f_n do not converge to 0 almost everywhere, then there exists $\varepsilon > 0$ such that the sets $A_{\varepsilon,n} = \{x | f_n(x) \ge \varepsilon\}$ satisfy $\limsup_n \mu(A_{\varepsilon,n}) = \delta > 0$. But $A_{\varepsilon,n} \supseteq A_{\varepsilon,n+1}$, and therefore $A = \bigcap_n A_{\varepsilon,n}$ satisfies $\mu(A) \ge \delta$. The characteristic function of A gives a vector ξ such that $\|M_{f_n}\xi\| \neq 0$. \Box

By linearity, the claim implies that if $f_n \ge f_{n+1} \ge g$ are real in $L^{\infty}(X, \mu)$, then f_n converges to g almost everywhere if and only if M_{f_n} SOT-converges to M_q .

The conjugation by $U, R \mapsto URU^*$, is norm-norm continuous, but it is also SOT-SOT continuous (proof is straightforward and a good exercise). It is also WOT-WOT continuous (another little exercise) but we don't need this.

For a Borel $A \subseteq [0,1]$, consider the projection $P(A) = M_{1_A}$ in $\mathcal{B}(L^2([0,1],\mu))$ and the projection $Q(A) = M_{1_A}$ in $\mathcal{B}(L^2([0,1],\nu))$.

Claim 2. For every Borel $A \subseteq [0,1]$ we have $UP(A)U^* = Q(A)$.

Proof. Since $UTU^* = S$ (i.e., $UM_{id}U^* = M_{id}$), for every polynomial and every $f \in C([0, 1])$ we have $UM_fU^* = M_f$.

If $A \subseteq [0,1]$, is closed, then 1_A is the pointwise infimum of a decreasing sequence f_n of functions in C([0,1]). Then SOT- $\lim_n M_{f_n} = P(A)$ and by the first claim $UP(A)U^* = Q(A)$. By looking at the complements, the same holds for the open sets.

If $A \subseteq [0,1]$ is G_{δ} , then it is the intersection of open sets, and using the first claim again we have $UP(A)U^* = Q(A)$.

Every measurable $A \subseteq [0, 1]$ is equal to a G_{δ} set A' modulo a null set, thus P(A) = P(A') and the conclusion follows for all Borel sets.

(Digression: The claim implies that for every $f \in L^{\infty}(X,\mu)$ we have $UM_fU^* = M_f$. By linearity, for all step functions f we have $UM_fU^* = M_f$. Since every $f \in L^{\infty}(X,\mu)$ is a uniform limit of step functions, the conclusion follows. We don't need this fact.)

Claim implies that $\mu(A) = 0$ if and only if $\nu(A) = 0$. In other words, μ is absolutely continuous with respect to ν and vice versa.

Finally note that the pure point spectrum of T is empty if and only if μ has no atoms (i.e., every singleton has measure zero).

The question therefore reduces to finding two strictly positive measures on [0, 1], neither one of which has atoms, such that one of them is not absolutely continuous with respect to the other.

Take μ to be the Lebesgue measure. Let $P \subseteq [0,1]$ be a perfect set such that $\mu(P) = 0$. There is a strictly positive Borel probability measure ν_P on P with no atoms. (E.g., identify P with the Cantor set. Then identify the Cantor set with the product $\{0,1\}^{\mathbb{N}}$, and on this space consider the product of uniform probability measures on $\{0,1\}$.) Then μ and $\frac{1}{2}\mu + \frac{1}{2}\mu_P$ are as required.

(b) (6pts) Find infinitely many self-adjoint operators on H with spectrum [0, 1] and empty point-spectrum that are pairwise unitarily inequivalent.

Solution. Continuing the argument of part (a), pick infinitely many disjoint perfect μ null subsets P_n of [0, 1]. (There are infinitely many ways to find such P_n ; see e.g., the
solution to part (c).) On each P_n choose a measure ν_n as in part (a). Then for example $\mu_n = \frac{1}{2}\mu + \frac{1}{2}\nu_n$ are as required.

(c) (Bonus 5pts) Find uncountably many self-adjoint operators on H with spectrum [0, 1] and empty point-spectrum that are pairwise unitarily inequivalent.

Solution. Continuing the argument of part (b), one only needs uncountably many perfect μ -null subsets of [0, 1]. For this, note that the Cantor space $\{0, 1\}^{\mathbb{N}}$ is homeomorphic to its square $(\{0, 1\}^{\mathbb{N}})^2$. Therefore the vertical sections of this square give continuum many disjoint perfect subsets of the Cantor space, and therefore continuum many disjoint perfect μ -null subset P of [0, 1].

Suppose that T is a normal operator on H with spectrum $X = \sigma(T)$. By the Spectral Theorem, there are a σ -finite Borel measure¹ μ on X and a unitary $U: L^2(X, \mu) \to H$ such that $T = UM_f U^*$, where f is the identity function on X. By the Bounded Borel Functional calculus, there is a σ -representation π of B(X) on H.

On the other hand, by Theorem 2.1.3 in Arveson, the map $\Phi: L^{\infty}(X,\mu) \ni f \mapsto M_f \in \mathcal{B}(L^2(X,\mu))$ is an isometric isomorphism.

Let $\iota: C(X) \to L^{\infty}(X, \mu)$ be the identity map. Note that it is injective, since μ is strictly positive on X.

(2) (a) (5pts) Suppose that T is a self-adjoint operator on H such that $||T^2 - T|| < 1/4$. Prove that there is a projection in C^{*}(T) (the C^{*}-algebra generated by T).

Solution. (This one was trivial as one could take the projection to be 0; I should have e.g., added the assumption that $\{0,1\} \subseteq \sigma(T)$ and required that the projection is nontrivial, i.e., neither 0 nor 1. This is what the proof shows.) The Spectral Theorem easily implies that $C^*(T,1) \cong C(\sigma(T))$. Since $T = T^*$, the Continuous Functional Calculus implies $\sigma(T) \subseteq \mathbb{R}^2$.

Since $||T-T^2|| < 1/4$, and (again by the Continuous Functional Calculus, CFC) $||T-T^2|| = \sup\{|t-t^2|: t \in \sigma(T)\}$, we have $1/2 \notin \sigma(T)$. Let $g: \sigma(T) \to \{0,1\}$ be defined by g(t) = 0 if t < 1/2 and g(t) = 1 if t > 1/2. Since $1/2 \notin \sigma(T)$, g is continuous on $\sigma(T)$, and therefore (CFC again) $P = f(T) \in C^*(T, 1)$. By CFC, $g^2 = g$ implies $P^* = P$ and $g = \overline{g}$ implies $P = P^*$, hence P is a projection.

(b) (5pts) Prove that there is a decreasing $f: (0, 1/2) \to (0, 1]$ that satisfies $\lim_{t\to 0} f(t) = 0$ and such that if T is a self-adjoint operator on H and $||T^2 - T|| = \varepsilon < 1/2$, then there is a projection P in $C^*(T)$ such that $||P - T|| \le f(\varepsilon)$.

¹There is a probability measure with the same property; this is an exercise.

²We are shooting a fly with a cannon; proving this from the scratch is a nice exercise.

Solution. This is a refinement of the solution to (a). Fix $0 < \varepsilon < 1/2$ and that $||T - T^2|| \stackrel{3}{=} \varepsilon$. The solution to the inequality $|t - t^2| \le \varepsilon$ is

$$\left(-\frac{1-\sqrt{1+4\varepsilon}}{2},\frac{1-\sqrt{1-4\varepsilon}}{2}\right)\cup\left(\frac{1+\sqrt{1-4\varepsilon}}{2},\frac{1+\sqrt{1+4\varepsilon}}{2}\right).$$

Let

$$f(\varepsilon) = \min \left| \frac{1 \pm \sqrt{1 \pm 4\varepsilon}}{2} \right|.$$

By CFC, with g as in the first part, $||T - g(T)|| = f(\varepsilon)$. Clearly $\lim_{\varepsilon \to 0^+} f(\varepsilon) = 0$, as required. (One could work out a nicer-looking bound, but this was not the point of the exercise.)

(3) (Continuity of the continuous functional calculus.) Fix a continuous function $f: \mathbb{C} \to \mathbb{C}$. For a normal operator T on H, f(T) is defined by the (obvious extension of) the continuous functional calculus. Prove that if T_n and T are normal operators such that $\lim_n ||T_n - T|| = 0$ then $\lim_n ||f(T_n) - f(T)|| = 0$.

Solution. First we prove that this is true when $f(x) = x^n$ for some $n \ge 1$. Fix n. We have (writing $T^0 = 1$)

$$T^{n} - S^{n} = \sum_{j=0}^{n-1} S^{j} (T - S) T^{n-1-j}$$

and therefore $||T^n - S^n|| \le \sum_{j=0}^{n-1} ||S - T|| ||S^j|| ||T^{n-1-j}||$. If T is normal, then $||T^j|| = ||T||^j$, and therefore with $M = \max(||S||, ||T||)$ we have $||T^n - S^n|| \le nM^{n-1}||T - S||$.

Now suppose $||T_m - T|| \to 0$ as $m \to \infty$. Then $||T_m|| \to ||T||$, and in particular $M = \sup_m \max_{j < n} ||T_m|| < \infty$. By the above calculations $||T_m^n - T^n|| < nM^{n-1}||T_m - T|| \to 0$ as $n \to \infty$.

Also, $||T_m^* - T^*|| = ||T_m - T||.$

Let p(x) be a complex *-polynomial such that x and x^* commute, hence p(x) is a complex linear combination of terms of the form $x^m(x^*)^k$ for $m \ge 0$ and $k \ge 0$. By the continuity of the addition and scalar multiplication, $||T_n - T|| \to 0$ implies $||p(T_n) - p(T)|| \to 0$.

Finally, let X denote the closed disk of radius M (as above) centered at 0. Then $\sigma(T_n) \subseteq X$ for all n. By the Stone-Weierstrass theorem, the algebra of complex *-polynomials is normdense in C(X). Fix $f \in C(X)$ and let $p_m(x)$ be a sequence of polynomials that converges to f uniformly on X. Then $\lim_n \|p_m(T_n) - p_m(T)\| = 0$. By the Continuous Functional Calculus, $\lim_m \|p_m(T) - f(T)\| = 0$, and $\lim_m \|p_m(T_n) - f(T_n)\| = 0$ for all n. Choosing $m(n) \to \infty$ such that both $\|p_{m(n)}(T_n) - f(T_n)\| < 1/n$ and $\|p_{m(n)}(T) - f(T)\| < 1/n$ for all n, $\|f(T_n) - f(T)\| \to 0$ follows.

- (4) Suppose that X and Y are compact Hausdorff spaces and that $\Phi: C(X) \to C(Y)$ is a unital homomorphism (Φ is not assumed to be continuous).
 - (a) Prove that there is a function $\tilde{\Phi}: Y \to X$ such that $(\Phi(f))(y) = f(\tilde{\Phi}(y))$ for all $y \in Y$.

Solution. Since $\Phi: C(X) \to C(Y)$ is a bounded linear operator, we can consider its transpose $\Phi^*: C(Y)^* \to C(X)^*$ such that for all $f \in C(X)$ and $\varphi \in C(Y)^*$ we have

$$(\Phi(f),\varphi) = (f,\Phi^*(\varphi)).$$

Let Φ be the restriction of Φ to Sp(C(Y)) (identified with Y). Then (using the definitions) for $y \in Y$ and $f \in C(X)$ we have

$$\Phi(f)(y) = (\Phi(f), y) = (f, \tilde{\Phi}(y)) = f(\tilde{\Phi}(y))$$

as required.

(b) Prove that $\tilde{\Phi}$ is continuous.

Solution. The transpose of a bounded linear operator is continuous in the weak operator topology.

(c) Prove that $\Phi(f^*) = \Phi(f)^*$ for all $f \in C(X)$.

Solution. For every $y \in Y$ we have $\Phi(f^*)(y) = f^*(\tilde{\Phi}(y)) = \overline{\tilde{\Phi}(f)(y)} = \overline{\Phi(f)(y)}$. Since this is true for all $y \in Y$, the identify follows.

- (5) This is a continuation of Question (4), with Φ , X, Y, and $\overline{\Phi}$ as before. In each of the following, first complete the sentence by inserting the right word (a property of a continuous map) and prove the assertion obtained in this way.
 - (a) Prove that Φ is an isomorphism if and only if $\overline{\Phi}$ is....

Solution. The magic word is 'homeomorphism'. Since Φ is an isomorphism iff it is injective and surjective, and $\tilde{\Phi}$ is a homeomorphism iff it is injective and surjective, this will follow from the other two parts of the question.

(b) Prove that $ker(\Phi) = \{0\}$ if and only if Φ is....

Solution. The magic word is 'surjective'. Suppose $\tilde{\Phi}$ is surjective. If $f \in C(X)$ is nonzero, fix $y \in Y$ such that $f(\tilde{\Phi}(y)) \neq 0$. Then $\tilde{\Phi}(f)(y) \neq 0$. Since f was arbitrary, $\ker(\tilde{\Phi}) = \{0\}$. Conversely, if $\tilde{\Phi}$ is not surjective, then $X \setminus \tilde{\Phi}[Y]$ is a nonempty open set. (Since Y is compact, its image is closed.) Fix $x \in X \setminus \tilde{\Phi}[Y]$. By the Tietze Extension Theorem find $f \in C(X)$ that vanishes on $\tilde{\Phi}[Y]$ such that f(x) = 1. Then $\Phi(f) = 0$, hence $\ker(\Phi)$ is nontrivial.

(c) Prove that Φ is surjective if and only if $\tilde{\Phi}$ is....

Solution. The magic word is 'injective'. Suppose $\tilde{\Phi}$ is injective. By the compactness of Y and of $X_0 = \tilde{\Phi}[Y]$, $\tilde{\Phi}$ is a homeomorphism between X_0 and Y. For $h \in C(Y)$ define $f_0: X_0 \to \mathbb{C}$ by $f_0 = h \circ \tilde{\Phi}^{-1}$. Then f_0 is continuous, and by the Tietze Extension Theorem it has a continuous extension to $f \in C(X)$. Then $\Phi(f) = f \circ \tilde{\Phi} = h$.

Conversely, suppose $\tilde{\Phi}$ is not injective and fix $y \neq y'$ in Y such that $\tilde{\Phi}(y) = \tilde{\Phi}(y')$. Then for every $f \in C(X)$, $\Phi(f)(y) = f \circ \tilde{\Phi}(y) = f \circ \tilde{\Phi}(y') = \Phi(f)(y')$. Since C(Y) separates the points of Y and $\Phi[C(X)]$ does not, Φ is not surjective.

- (6) Suppose that π is a representation of a Banach *-algebra A on H. Prove that the following are equivalent.
 - (a) Every nonzero $\xi \in H$ is cyclic for π .
 - (b) The only closed subspaces of H that are invariant³ for $\pi(a)$ for every $a \in A$ are $\{0\}$ and H.
 - (c) If $T \in \mathcal{B}(H)$ commutes with $\pi(a)$ for all $a \in A$, then T is a scalar multiple of the identity.

Solution. A nontrivial invariant subspace cannot contain a cyclic vector (and it contains nonzero vectors). This easily implies that (6a) and (6b) are equivalent.

(6c) implies (6b): If K is a nontrivial closed invariant subspace, then the ortohogonal projection to K is an invariant nonscalar operator.

(6b) implies (6c): This is the only nontrivial implication. Suppose that (6c) fails. Let A be the subalgebra of $\mathcal{B}(H)$ consisting of all operators that commute with $\pi(a)$ for all $a \in A$.⁴ A routine calculation shows that A is WOT-closed, and therefore a von Neumann algebra.

If all self-adjoint operators in A were scalar, then every operator in A would be scalar. THis is because $T = T_0 + iT_1$, for self-adjoint T_0 and T_1 . We can therefore fix a self-adjoint, nonscalar, $T \in \pi[A]'$. Thus $\sigma(T) \subseteq \mathbb{R}$ and it has more than one point. Let U be a bounded open interval in \mathbb{R} such that both $U \cap \sigma(T)$ and $\sigma(T) \setminus U$ are nonempty. Let $X = \sigma(T) \cap U$. Let $f_n \colon \mathbb{R} \to [0, 1]$ be a sequence of continuous functions on converging to χ_U pointwise (Tietze).

By the Bounded Borel Functional Calculus, let $S = \chi_X(T)$.

³A subspace K of H is invariant for T if $T[K] \subseteq K$.

⁴This is the *relative commutant* of $\pi[A]$, denoted by $\pi[A]'$; this is not used in the proof.

(7) Suppose that $T \in \mathcal{B}(H)$ is a normal operator. Prove that the range of $\mathcal{B}(\sigma(T))$ under the Bounded Borel Functional Calculus associated to T is a von Neumann algebra.

There is some overlap with the solution to Question (1).

Solution. Let $\pi: \mathcal{B}(\sigma(T)) \to \mathcal{B}(H)$ be the σ -representation given by the Bounded Borel Functional Calculus. Denote its range by N. Meanwhile, by the Spectral Theorem we may assume that $H = L^2(X, \mu)$ and $T \in L^{\infty}(X, \mu)$ for some probability measure space X. We will write

$$\mathcal{A} = L^{\infty}(X, \mu).$$

Let P be the spectral measure associated with π and let Borel(X) denote the σ -algebra of Borel subsets of $\sigma(T)$. Then for every $A \in \mathcal{B}$ we have $P(A) \in \mathcal{A}$.

This fact requires a proof. We will prove that the family $\mathcal{F} = \{A \in \text{Borel}(\sigma(T)) | P(A) \in \mathcal{A}\}$ includes all open sets and is closed under complements and countable unions. We will use the fact that if (S_n) is a sequence in \mathcal{A} and $S = \text{SOT-} \lim S_n$, then $S \in \mathcal{A}$.

If A is open, then the characteristic function $1_A \in \mathcal{B}(X)$ is a pointwise limit of continuous functions. Since π is a σ -representation, $P(A) \in \mathcal{A}$. If $A = \bigcup_n A_n$, and $P(A_n) \in \mathcal{A}$ then again because π is a σ -representation $P(A) \in \mathcal{A}$. Clearly if $P(A) \in \mathcal{A}$ then $P(\mathbb{C} \setminus A) = 1 - P(A)$ is in \mathcal{A} .

Fix $\pi(f) \in N$. Then f is a pointwise limit of step functions f_n . Every step function f_n is a linear combination of characteristic functions 1_A , and therefore by the previous paragraph $\pi(f_n) \in \mathcal{A}$. Since π is a σ -representation, $\pi(f) \in \mathcal{A}$. Thus $\pi[\mathcal{B}(X)] \subseteq \mathcal{A}$.

Almost there. Fix S in the SOT-closure of N. We need to prove that $S \in N$.

We claim that S commutes with every element of \mathcal{A} . This is 'obvious' but let's prove it. For $T \in \mathcal{B}(H)$ the function $F_T(X) \mapsto TX - XT$ is SOT-continuous. Then F_T vanishes on \mathcal{A} if and only if T commutes with $\mathcal{A}^{.5}$ Let (T_{λ}) be a net in N such that $S = \text{SOT-lim} T_{\lambda}$. For every $T \in N$, F_T vanishes on \mathcal{A} because $N \subseteq \mathcal{A}$ and \mathcal{A} is abelian. Thus for every $R \in \mathcal{A}$ we have $F_S(R) = \text{SOT-lim} F_{T_{\lambda}}(R) = 0$, and F_S vanishes on \mathcal{A} .

For a measurable $A \subseteq X$ write ξ_A for the characteristic function of A considered as a vector in $L^2(X,\mu)^6$ and write Q_A for the same function considered as a projection in \mathcal{A} .

Fix measurable $A \subseteq B \subseteq X$. Then

$$Q_A S \xi_B = S Q_A \xi_B = S \xi_A.$$

We claim that $\eta = S\xi_X$ is in $L^{\infty}(X, \mu)$. (It is clearly in $L^2(X, \mu)$.) Otherwise, for every $m \in \mathbb{N}$ the set

$$A(m) = \{x \in X | |\eta(x)| \ge K\}$$

is not μ -null. But (1) implies $S\xi_{A(m)} = P_{A(m)}\eta$, thus $\|S\xi_{A(m)}\|_2 \ge m\|\xi_{A(m)}\|_2$ and $\|S\| \ge m$ for all m; contradiction.

Thus $\eta \in \mathcal{A}$. We claim that $S = M_f$ (the multiplication operator). For measurable $A \subseteq X$ we have $SQ_A = M_\eta Q_A$ by (1). By linearity, this equality also holds for linear combinations of projections in \mathcal{A} .

⁵This is also equivalent to $T \in \mathcal{A}$, but we don't need this.

⁶Then $\xi_A \in L^2(X,\mu)$ since we are assuming that μ is a probability measure, which is not a loss of generality.