
Math 6462, W22. Assignment # 3 solutions
In all questions, H stands for the separable infinite-dimensional Hilbert space.

(1) (a) (4pts) Find two self-adjoint operators on H with spectrum [0, 1] and empty point-spectrum
that are not unitarily equivalent.
The solution is somewhat more detailed than necessary.

Solution. Consider strictly positive Borel measures µ and ν on [0, 1]. Let S be Mid on
L2([0, 1], µ) and let T be Mid on L2([0, 1], ν). Since µ is strictly positive, σ(S) = [0, 1], and
similarly σ(T ) = [0, 1]. We’ll see when is there a unitary U : L2([0, 1], µ) → L2([0, 1], ν)
such that S = UTU∗.

Claim 1. Suppose fn is a bounded sequence in L∞(X,µ) such that fn ≥ fn+1 ≥ 0 for
all n. Then fn converges to 0 almost everywhere if and only if SOT- limn Mfn = 0.

Proof. The forward implication uses the Dominated Convergence Theorem, as we did in
class when proving Theorem 2.6.3 (and Remark 2.6.2) in Arveson, that a nondegenerate
representation of C(X) extends to a σ-representation of B(X).
For the converse use the assumption that fn ≥ fn+1 ≥ 0 for all n. If fn do not converge
to 0 almost everywhere, then there exists ε > 0 such that the sets Aε,n = {x|fn(x) ≥ ε}
satisfy lim supn µ(Aε,n) = δ > 0. But Aε,n ⊇ Aε,n+1, and therefore A =

!
n Aε,n satisfies

µ(A) ≥ δ. The characteristic function of A gives a vector ξ such that ‖Mfnξ‖ ∕→ 0. □

By linearity, the claim implies that if fn ≥ fn+1 ≥ g are real in L∞(X,µ), then fn converges
to g almost everywhere if and only if Mfn SOT-converges to Mg.
The conjugation by U , R &→ URU∗, is norm-norm continuous, but it is also SOT-SOT
continuous (proof is straightforward and a good exercise). It is also WOT-WOT continuous
(another little exercise) but we don’t need this.
For a Borel A ⊆ [0, 1], consider the projection P (A) = M1A in B(L2([0, 1], µ)) and the
projection Q(A) = M1A in B(L2([0, 1], ν)).

Claim 2. For every Borel A ⊆ [0, 1] we have UP (A)U∗ = Q(A).

Proof. Since UTU∗ = S (i.e., UMidU
∗ = Mid), for every polynomial and every f ∈ C([0, 1])

we have UMfU
∗ = Mf .

If A ⊆ [0, 1], is closed, then 1A is the pointwise infimum of a decreasing sequence fn of
functions in C([0, 1]). Then SOT- limn Mfn = P (A) and by the first claim UP (A)U∗ =
Q(A). By looking at the complements, the same holds for the open sets.
If A ⊆ [0, 1] is Gδ, then it is the intersection of open sets, and using the first claim again
we have UP (A)U∗ = Q(A).
Every measurable A ⊆ [0, 1] is equal to a Gδ set A

′ modulo a null set, thus P (A) = P (A′)
and the conclusion follows for all Borel sets. □

(Digression: The claim implies that for every f ∈ L∞(X,µ) we have UMfU
∗ = Mf . By

linearity, for all step functions f we have UMfU
∗ = Mf . Since every f ∈ L∞(X,µ) is a

uniform limit of step functions, the conclusion follows. We don’t need this fact.)
Claim implies that µ(A) = 0 if and only if ν(A) = 0. In other words, µ is absolutely
continuous with respect to ν and vice versa.
Finally note that the pure point spectrum of T is empty if and only if µ has no atoms
(i.e., every singleton has measure zero).
The question therefore reduces to finding two strictly positive measures on [0, 1], neither
one of which has atoms, such that one of them is not absolutely continuous with respect
to the other.
Take µ to be the Lebesgue measure. Let P ⊆ [0, 1] be a perfect set such that µ(P ) = 0.
There is a strictly positive Borel probability measure νP on P with no atoms. (E.g.,
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identify P with the Cantor set. Then identify the Cantor set with the product {0, 1}N,
and on this space consider the product of uniform probability measures on {0, 1}.)
Then µ and 1

2
µ+ 1

2
µP are as required.

(b) (6pts) Find infinitely many self-adjoint operators on H with spectrum [0, 1] and empty
point-spectrum that are pairwise unitarily inequivalent.

Solution. Continuing the argument of part (a), pick infinitely many disjoint perfect µ-
null subsets Pn of [0, 1]. (There are infinitely many ways to find such Pn; see e.g., the
solution to part (c).) On each Pn choose a measure νn as in part (a). Then for example
µn = 1

2
µ+ 1

2
νn are as required.

(c) (Bonus 5pts) Find uncountably many self-adjoint operators on H with spectrum [0, 1] and
empty point-spectrum that are pairwise unitarily inequivalent.

Solution. Continuing the argument of part (b), one only needs uncountably many perfect
µ-null subsets of [0, 1]. For this, note that the Cantor space {0, 1}N is homeomorphic to
its square ({0, 1}N)2. Therefore the vertical sections of this square give continuum many
disjoint perfect subsets of the Cantor space, and therefore continuum many disjoint perfect
subsets of a perfect µ-null subset P of [0, 1].
Suppose that T is a normal operator on H with spectrum X = σ(T ). By the Spectral
Theorem, there are a σ-finite Borel measure1 µ on X and a unitary U : L2(X,µ) → H
such that T = UMfU

∗, where f is the identity function on X. By the Bounded Borel
Functional calculus, there is a σ-representation π of B(X) on H.
On the other hand, by Theorem 2.1.3 in Arveson, the map Φ : L∞(X,µ) ∋ f &→ Mf ∈
B(L2(X,µ)) is an isometric isomorphism.
Let ι : C(X) → L∞(X,µ) be the identity map. Note that it is injective, since µ is strictly
positive on X.

C(X) L∞(X,µ)

B(H)

(2) (a) (5pts) Suppose that T is a self-adjoint operator on H such that ‖T 2 − T‖ < 1/4. Prove
that there is a projection in C∗(T ) (the C∗-algebra generated by T ).

Solution. (This one was trivial as one could take the projection to be 0; I should have e.g.,
added the assumption that {0, 1} ⊆ σ(T ) and required that the projection is nontrivial,
i.e., neither 0 nor 1. This is what the proof shows.) The Spectral Theorem easily implies
that C∗(T, 1) ∼= C(σ(T )). Since T = T ∗, the Continuous Functional Calculus implies
σ(T ) ⊆ R.2
Since ‖T−T 2‖ < 1/4, and (again by the Continuous Functional Calculus, CFC) ‖T−T 2‖ =
sup{|t− t2| : t ∈ σ(T )}, we have 1/2 /∈ σ(T ). Let g : σ(T ) → {0, 1} be defined by g(t) = 0
if t < 1/2 and g(t) = 1 if t > 1/2. Since 1/2 /∈ σ(T ), g is continuous on σ(T ), and therefore
(CFC again) P = f(T ) ∈ C∗(T, 1). By CFC, g2 = g implies P ∗ = P and g = g implies
P = P ∗, hence P is a projection.

(b) (5pts) Prove that there is a decreasing f : (0, 1/2) → (0, 1] that satisfies limt→0 f(t) = 0
and such that if T is a self-adjoint operator on H and ‖T 2 − T‖ = ε < 1/2, then there is
a projection P in C∗(T ) such that ‖P − T‖ ≤ f(ε).

1There is a probability measure with the same property; this is an exercise.
2We are shooting a fly with a cannon; proving this from the scratch is a nice exercise.
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Solution. This is a refinement of the solution to (a). Fix 0 < ε < 1/2 and that ‖T−T 2‖ =
ε. The solution to the inequality |t− t2| ≤ ε is

"
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Let

f(ε) = min

$$$$
1±

√
1± 4ε

2

$$$$ .

By CFC, with g as in the first part, ‖T − g(T )‖ = f(ε). Clearly limε→0+ f(ε) = 0, as
required. (One could work out a nicer-looking bound, but this was not the point of the
exercise.)

(3) (Continuity of the continuous functional calculus.) Fix a continuous function f : C → C.
For a normal operator T on H, f(T ) is defined by the (obvious extension of) the continuous
functional calculus. Prove that if Tn and T are normal operators such that limn ‖Tn − T‖ = 0
then limn ‖f(Tn)− f(T )‖ = 0.

Solution. First we prove that this is true when f(x) = xn for some n ≥ 1. Fix n. We have
(writing T 0 = 1)

T n − Sn =
n−1%

j=0

Sj(T − S)T n−1−j

and therefore ‖T n − Sn‖ ≤
&n−1

j=0 ‖S − T‖‖Sj‖‖T n−1−j‖. If T is normal, then ‖T j‖ = ‖T‖j,
and therefore with M = max(‖S‖, ‖T‖) we have ‖T n − Sn‖ ≤ nMn−1‖T − S‖.

Now suppose ‖Tm − T‖ → 0 as m → ∞. Then ‖Tm‖ → ‖T‖, and in particular M =
supm maxj<n ‖Tm‖ < ∞. By the above calculations ‖T n

m − T n‖ < nMn−1‖Tm − T‖ → 0 as
n → ∞.

Also, ‖T ∗
m − T ∗‖ = ‖Tm − T‖.

Let p(x) be a complex *-polynomial such that x and x∗ commute, hence p(x) is a complex
linear combination of terms of the form xm(x∗)k for m ≥ 0 and k ≥ 0. By the continuity of the
addition and scalar multiplication, ‖Tn − T‖ → 0 implies ‖p(Tn)− p(T )‖ → 0.

Finally, let X denote the closed disk of radius M (as above) centered at 0. Then σ(Tn) ⊆ X
for all n. By the Stone-Weierstrass theorem, the algebra of complex *-polynomials is norm-
dense in C(X). Fix f ∈ C(X) and let pm(x) be a sequence of polynomials that converges to
f uniformly on X. Then limn ‖pm(Tn)− pm(T )‖ = 0. By the Continuous Functional Calculus,
limm ‖pm(T )− f(T )‖ = 0, and limm ‖pm(Tn)− f(Tn)‖ = 0 for all n. Choosing m(n) → ∞ such
that both ‖pm(n)(Tn)−f(Tn)‖ < 1/n and ‖pm(n)(T )−f(T )‖ < 1/n for all n, ‖f(Tn)−f(T )‖ → 0
follows.

(4) Suppose that X and Y are compact Hausdorff spaces and that Φ : C(X) → C(Y ) is a unital
homomorphism (Φ is not assumed to be continuous).
(a) Prove that there is a function Φ̃ : Y → X such that (Φ(f))(y) = f(Φ̃(y)) for all y ∈ Y .

Solution. Since Φ : C(X) → C(Y ) is a bounded linear operator, we can consider its
transpose Φ∗ : C(Y )∗ → C(X)∗ such that for all f ∈ C(X) and ϕ ∈ C(Y )∗ we have

(Φ(f),ϕ) = (f,Φ∗(ϕ)).

Let Φ̃ be the restriction of Φ to Sp(C(Y )) (identified with Y ). Then (using the definitions)
for y ∈ Y and f ∈ C(X) we have

Φ(f)(y) = (Φ(f), y) = (f, Φ̃(y)) = f(Φ̃(y))

as required.
(b) Prove that Φ̃ is continuous.
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Solution. The transpose of a bounded linear operator is continuous in the weak operator
topology.

(c) Prove that Φ(f ∗) = Φ(f)∗ for all f ∈ C(X).

Solution. For every y ∈ Y we have Φ(f ∗)(y) = f ∗(Φ̃(y)) = Φ̃(f)(y)) = Φ(f)(y). Since
this is true for all y ∈ Y , the identify follows.

(5) This is a continuation of Question (4), with Φ, X, Y , and Φ̃ as before. In each of the following,
first complete the sentence by inserting the right word (a property of a continuous map) and
prove the assertion obtained in this way.
(a) Prove that Φ is an isomorphism if and only if Φ̃ is. . . .

Solution. The magic word is ‘homeomorphism’. Since Φ is an isomorphism iff it is injec-
tive and surjective, and Φ̃ is a homeomorphism iff it is injective and surjective, this will
follow from the other two parts of the question.

(b) Prove that ker(Φ) = {0} if and only if Φ̃ is. . . .

Solution. The magic word is ‘surjective’. Suppose Φ̃ is surjective. If f ∈ C(X) is nonzero,
fix y ∈ Y such that f(Φ̃(y)) ∕= 0. Then Φ̃(f)(y) ∕= 0. Since f was arbitrary, ker(Φ̃) = {0}.
Conversely, if Φ̃ is not surjective, then X \ Φ̃[Y ] is a nonempty open set. (Since Y is
compact, its image is closed.) Fix x ∈ X \ Φ̃[Y ]. By the Tietze Extension Theorem find
f ∈ C(X) that vanishes on Φ̃[Y ] such that f(x) = 1. Then Φ(f) = 0, hence ker(Φ) is
nontrivial.

(c) Prove that Φ is surjective if and only if Φ̃ is. . . .

Solution. The magic word is ‘injective’. Suppose Φ̃ is injective. By the compactness of
Y and of X0 = Φ̃[Y ], Φ̃ is a homeomorphism between X0 and Y . For h ∈ C(Y ) define
f0 : X0 → C by f0 = h◦ Φ̃−1. Then f0 is continuous, and by the Tietze Extension Theorem
it has a continuous extension to f ∈ C(X). Then Φ(f) = f ◦ Φ̃ = h.
Conversely, suppose Φ̃ is not injective and fix y ∕= y′ in Y such that Φ̃(y) = Φ̃(y′). Then
for every f ∈ C(X), Φ(f)(y) = f ◦ Φ̃(y) = f ◦ Φ̃(y′) = Φ(f)(y′). Since C(Y ) separates the
points of Y and Φ[C(X)] does not, Φ is not surjective.

(6) Suppose that π is a representation of a Banach ∗-algebra A on H. Prove that the following are
equivalent.
(a) Every nonzero ξ ∈ H is cyclic for π.
(b) The only closed subspaces of H that are invariant3 for π(a) for every a ∈ A are {0} and H.
(c) If T ∈ B(H) commutes with π(a) for all a ∈ A, then T is a scalar multiple of the identity.

Solution. A nontrivial invariant subspace cannot contain a cyclic vector (and it contains
nonzero vectors). This easily implies that (6a) and (6b) are equivalent.

(6c) implies (6b): If K is a nontrivial closed invariant subspace, then the ortohogonal pro-
jection to K is an invariant nonscalar operator.

(6b) implies (6c): This is the only nontrivial implication. Suppose that (6c) fails. Let A be
the subalgebra of B(H) consisting of all operators that commute with π(a) for all a ∈ A.4 A
routine calculation shows that A is WOT-closed, and therefore a von Neumann algebra.

If all self-adjoint operators in A were scalar, then every operator in A would be scalar. THis
is because T = T0 + iT1, for self-adjoint T0 and T1. We can therefore fix a self-adjoint, non-
scalar, T ∈ π[A]′. Thus σ(T ) ⊆ R and it has more than one point. Let U be a bounded open
interval in R such that both U ∩ σ(T ) and σ(T ) \ U are nonempty. Let X = σ(T ) ∩ U . Let
fn : R → [0, 1] be a sequence of continuous functions on converging to χU pointwise (Tietze).

By the Bounded Borel Functional Calculus, let S = χX(T ).

3A subspace K of H is invariant for T if T [K] ⊆ K.
4This is the relative commutant of π[A], denoted by π[A]′; this is not used in the proof.
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(7) Suppose that T ∈ B(H) is a normal operator. Prove that the range of B(σ(T )) under the

Bounded Borel Functional Calculus associated to T is a von Neumann algebra.
There is some overlap with the solution to Question (1).

Solution. Let π : B(σ(T )) → B(H) be the σ-representation given by the Bounded Borel Func-
tional Calculus. Denote its range by N . Meanwhile, by the Spectral Theorem we may assume
that H = L2(X,µ) and T ∈ L∞(X,µ) for some probability measure space X. We will write

A = L∞(X,µ).

Let P be the spectral measure associated with π and let Borel(X) denote the σ-algebra of
Borel subsets of σ(T ). Then for every A ∈ B we have P (A) ∈ A.

This fact requires a proof. We will prove that the family F = {A ∈ Borel(σ(T ))|P (A) ∈ A}
includes all open sets and is closed under complements and countable unions. We will use the
fact that if (Sn) is a sequence in A and S = SOT- limSn, then S ∈ A.

If A is open, then the characteristic function 1A ∈ B(X) is a pointwise limit of continuous
functions. Since π is a σ-representation, P (A) ∈ A. If A =

'
n An, and P (An) ∈ A then again

because π is a σ-representation P (A) ∈ A. Clearly if P (A) ∈ A then P (C \ A) = 1− P (A) is
in A.

Fix π(f) ∈ N . Then f is a pointwise limit of step functions fn. Every step function fn is
a linear combination of characteristic functions 1A, and therefore by the previous paragraph
π(fn) ∈ A. Since π is a σ-representation, π(f) ∈ A. Thus π[B(X)] ⊆ A.

Almost there. Fix S in the SOT-closure of N . We need to prove that S ∈ N .
We claim that S commutes with every element of A. This is ‘obvious’ but let’s prove it. For

T ∈ B(H) the function FT (X) &→ TX−XT is SOT-continuous. Then FT vanishes on A if and
only if T commutes with A.5 Let (Tλ) be a net in N such that S = SOT- limTλ. For every
T ∈ N , FT vanishes on A because N ⊆ A and A is abelian. Thus for every R ∈ A we have
FS(R) = SOT- limFTλ

(R) = 0, and FS vanishes on A.
For a measurable A ⊆ X write ξA for the characteristic function of A considered as a vector

in L2(X,µ)6 and write QA for the same function considered as a projection in A.
Fix measurable A ⊆ B ⊆ X. Then

(1) QASξB = SQAξB = SξA.

We claim that η = SξX is in L∞(X,µ). (It is clearly in L2(X,µ).) Otherwise, for every m ∈ N
the set

A(m) = {x ∈ X||η(x)| ≥ K}
is not µ-null. But (1) implies SξA(m) = PA(m)η, thus ‖SξA(m)‖2 ≥ m‖ξA(m)‖2 and ‖S‖ ≥ m for
all m; contradiction.

Thus η ∈ A. We claim that S = Mf (the multiplication operator). For measurable A ⊆ X
we have SQA = MηQA by (1). By linearity, this equality also holds for linear combinations of
projections in A.

5This is also equivalent to T ∈ A, but we don’t need this.
6Then ξA ∈ L2(X,µ) since we are assuming that µ is a probability measure, which is not a loss of generality.


