Math 6462, W22. Assignment # 2 solutions

(1) With D = {z € C||z| < 1} let A be the subalgebra (not a Banach subalgebra!) of C(D)
consisting of those functions that can be represented by the convergent series >~ a,2" such
that Y |a,| < co. Here z is the identity function on D.!

(a) (4pts) Verify that A is (algebraically) isomorphic to the Banach subalgebra ¢!(N) of ¢*(Z)
defined as

(Y(N) = {x € {1(Z)|z,, = 0 for all n < 0}.
(Recall that for me 0 € N.)

Solution. Define ®: A — (*(N) by ®(3°, an2™) = (an)nen. One verifies that @ is a
homomorphism by straightforward calculations. It is surjective because if a € (N)
then ) a,2" is absolutely convergent on D, and therefore in A. This is an algebraic

isomorphism between A and ¢!(N). )
(b) (6pts) Prove that f € A satisfies f(z) # 0 for all z € D if and only if f € GL(A).

Solution. The salient point is that Sp(¢*(N)) is homeomorphic to D. If A € D, define
ox: I1(N) = C by

OAD e @n2™) = D0 an A"

This is a convergent series, and direct computation shows that ¢, is a character on ¢!(N).
If ¢ € Sp(¢}(N)), let A, = ¢(2). Then |\,| < ||z|| = 1, thus A\, € D. A direct computation
shows that for ¢ € Sp(¢'(N)), ¢, and ¢ agree on finitely-supported sums in ¢'(N). This
is a dense subset of /!(N), hence ¢ = ¢, . On the other hand, for A € D we obviously
have A\,, = A.
Therefore  + A, is a bijection between Sp(/*(N)) and D. Being evaluation at a fixed
element of ¢! (N), this map is continuous. It is therefore, as a continuous bijection between
compact Hausdorff spaces, a homeomorphism.
Thus f € A is invertible iff ®(f) € ¢*(N) is invertible if and only if Y>>  ®(f), A" # 0 for
all A € D. But Y 02 ®(f),A\" = f()), proving the claim.
(2) (10pts) (Continuing (1).) Let S be the isometric shift on ¢*(N), defined by S(z),.1 = x, for
all n € N, S(z)o = 0. Prove that for every = € ¢*(N), the set of translates {S™z|n € N} spans
a dense subset of /!(N) if and only if the power series f(z) = Y ", ,2" has no zeros on D.

Solution. Let S denote the linear span of {S™z|n € N}.

By (1), f(z) = Y07, z,2" has no zeros on D if and only if f(z) € GL(A) if and only if
r € GL(/Y(N)). Tt therefore suffices to prove that the linear span of S is dense in /}(N) if and
only if € GL(¢*(N)). Here is a proof.

If the linear span of S is dense in ¢*(N), then there is a finite linear combination y =
>, AnS™x such that ||y — 1|] < 1. Therefore y is invertible, and (since ¢!(N) is abelian) so is x.

Conversely, if = is invertible, then 7! € S. Let y,, € S be such that [|y,, — 27| < 1/m.
Every finitely-supported element of ¢!(N) is of the form w = > \,5" =3 A\, S"az'z. For
every m, wy, = (>, 5")ym € S, and lim,, w,x = w. Since w was an arbitrary finitely
supported element and such elements are dense in ¢!(N), the conclusion follows.

(3) (10pts) Let M, (C) denote the Banach algebra of n x n complex matrices, with respect to the

operator norm. Suppose that A is a unital Banach algebra and n > 2. Prove that every
surjective homomorphism ¢: A — M, (C) is continuous.?

IThere was a misleading typo in this question, stating that A was a Banach subalgebra. It is not; it is a proper dense
subalgebra. Please let me know if this affected you.
2The special bonus offer is still valid: Is the assertion true without the assumption that ¢ is onto?
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Solution. Let J = ker(y). Then (by an isomorphism theorem from algebra) A/.J is isomorphic
to M, (C). Since M, (C) is simple, so is A/J and therefore J is a maximal ideal.

[This was mentioned in class in passing; in case I did not provide a proof, here it is: Suppose
J is not a maximal ideal. Since A is unital, there is a maximal proper ideal I O J. Then ¢[I]
is a proper ideal in M,,(C); contradiction. |

Since A is unital, every maximal ideal is closed. Therefore the quotient map 7: A — A/J is
continuous (a basic Banach space theory fact). Let ¢ denote the isomorphism between A/J and
M, (C) given by ¢(a+J) = ¢(a). Then ¢ = pom, and it suffices to check that ¢ is continuous.
But it is an isomorphism between finite-dimensional (more precisely, n-dimensional) Banach
spaces. Since all norms on a finite dimensional space are equivalent, ¢ is continuous.

(4) (10pts) Let H be (*(N). Prove that the adjoint operation A — A* on B(H) is continuous in

the weak operator topology (WOT), but not in the strong operator topology(SOT).

Solution. It suffices to prove the continuity at 0. WOT-subbasic neighbourhoods of 0 in B(H)
are of the form Ug,, = {a||(a&,n)| < e} for e > 0 and € and n in H. The preimage of U, under
the adjoint map is {al|(a°¢, )| < £} — {all(€, an)]| < £} = {al|(an,€)] < £} = Uy

Since ¢, £ and 7 were arbitrary, this proves that the preimage of every WOT-subbasic open
neighbourhood of 0 is WOT-open, hence the map is continuous at 0, Since it is conjugate linear,
it is WOT-continuous.

For the second part, let S denote the shift with respect to the standard orthonormal basis
(&) of H, and let a,, = (S*)" for n € N. Then a,(§;) = &—» if n < j and a,(§;) =0if n > j.
Thus for every vector n € H we have lim,, ||a,(n)|| = 0. (If n has finite support, then a,(n) =0
for a large enough n. Every n can be approximated arbitrarily well by a vector with a finite
support, and therefore a,(n) — 0 as n — 00.)

Thus SOT- lim,, a,, = 0.

On the other hand, a, (&) = &,, and therefore lim,, a,,(§y) does not exist (as a matter of fact,
lim, a,(n) exists iff n = 0). But SOT-lim, a,, = b is equivalent to lim, a,(n) = b(n) for all 7.
In particular, SOT-lim, (a,)** # 0* and the adjoint is not SOT-continuous.

(5) (10pts) Suppose that A is a commutative, unital, Banach algebra. Prove that the Gelfand map
is an isometry if and only if ||z]|* = ||z?| for all z € A.
Solution. Since ||z?| = ||z||* is clearly true in C'(X), if T4 is an isometry then ||z||? = ||z?||
for all z € A.

For the converse, assume ||z |z||* for all x € A. By induction this implies that |z
|z]|?". Therefore r(x) = lim, ||2"||'/" = lim,, ||2*"||>"" = ||z||. Since r(T's(z)) = ||Ta(z)]||, this
implies I"4(x) is an isometry.

(6) (10pts) Suppose that A is a unital Banach algebra generated by 1 and z. Prove that C\ o4(x)
is connected.

I = | =

Solution. Suppose otherwise. Let U be a bounded connected component of C \ o(z). Fix
A € U. Since A is generated by x and 1, there are complex polynomials P, (z) such that
lim,, || P.(x)(z — N)|| = 1.

The Gelfand transform I' sends A into a subalgebra of C(o(z)). It sends = to the identify
function on o(z) and a polynomial ) A,z" to the restriction of the complex polynomial
Yo Az to o(x). Thus Q.(z) = I'(P,(x)(x — \)) are complex polynomials that uniformly
converge to 1 on o(x). Also @,(\) = 0 for all n. By compactness of o(x), for a large n we have
1 —-Qn(v) <1/2forall v € o(z) but 1 — Q,(A) = 0. In particular, @), attains maximum on
o(x) UU in the interior of this set. This contradicts the maximum modulus principle.

(7) Let H be (*(N).
(a) (5pts) Suppose that (Uy), is a SOT-convergent net of unitaries, with limit A. Prove that
A is an isometry.



Solution. We have SOT-lim, U,, = A if and only if lim,, U,(n) = A(n) (this is the norn:i
limit) for all n € H. But ||U,(n)| = ||n|| for all n and 7, and therefore ||A(n)|| = n for all
n—but this means that A is an isometry.

(b) (5pts) Show that a SOT-limit of unitaries is not necessarily a unitary. (Hint: Consider
the unilateral shift on ¢*(N), defined by A(£),1 = &, for n € N and A(¢)y = 0. Find a
sequence of unitaries U,, that SOT-converges to A.

Solution. We can choose U, to be a permutation unitary, i.e., a unitary that permutes
the basis vectors. Let U, (&) = &1 if 7 < n, Un(&) = &, and U,(§;) = & if j > n.
This is a unitary. For every basis vector &;, we have U,(&;) = &4+ for all large enough
n. Therefore lim, U, (§;) = &j4+1. By linearity, one verifies that lim, U, and A agree on
the finite linear combinations of basis vectors. Since this is a dense set, we conclude that
lim,, U, (n) = A(n) for all n, and therefore SOT-lim,, U,, = A as required.



