
Math 6462, W22. Assignment # 2 solutions

(1) With D̄ = {z ∈ C||z| ≤ 1} let A be the subalgebra (not a Banach subalgebra!) of C(D̄)
consisting of those functions that can be represented by the convergent series

!∞
n=0 anz

n such
that

!
n |an| < ∞. Here z is the identity function on D̄.1

(a) (4pts) Verify that A is (algebraically) isomorphic to the Banach subalgebra ℓ1(N) of ℓ1(Z)
defined as

ℓ1(N) = {x ∈ ℓ1(Z)|xn = 0 for all n < 0}.

(Recall that for me 0 ∈ N.)

Solution. Define Φ : A → ℓ1(N) by Φ(
!

n anz
n) = (an)n∈N. One verifies that Φ is a

homomorphism by straightforward calculations. It is surjective because if a ∈ ℓ1(N)
then

!
n anz

n is absolutely convergent on D̄, and therefore in A. This is an algebraic
isomorphism between A and ℓ1(N).

(b) (6pts) Prove that f ∈ A satisfies f(z) ∕= 0 for all z ∈ D̄ if and only if f ∈ GL(A).

Solution. The salient point is that Sp(ℓ1(N)) is homeomorphic to D̄. If λ ∈ D̄, define
ϕλ : ℓ

1(N) → C by

ϕλ(
!∞

n=0 anz
n) =

!∞
n=0 anλ

n.

This is a convergent series, and direct computation shows that ϕλ is a character on ℓ1(N).
If ϕ ∈ Sp(ℓ1(N)), let λϕ = ϕ(z). Then |λϕ| ≤ ‖z‖ = 1, thus λϕ ∈ D̄. A direct computation
shows that for ϕ ∈ Sp(ℓ1(N)), ϕλϕ and ϕ agree on finitely-supported sums in ℓ1(N). This
is a dense subset of ℓ1(N), hence ϕ = ϕλϕ . On the other hand, for λ ∈ D̄ we obviously
have λϕλ

= λ.
Therefore ϕ '→ λϕ is a bijection between Sp(ℓ1(N)) and D̄. Being evaluation at a fixed
element of ℓ1(N), this map is continuous. It is therefore, as a continuous bijection between
compact Hausdorff spaces, a homeomorphism.
Thus f ∈ A is invertible iff Φ(f) ∈ ℓ1(N) is invertible if and only if

!∞
n=0 Φ(f)nλ

n ∕= 0 for
all λ ∈ D̄. But

!∞
n=0 Φ(f)nλ

n = f(λ), proving the claim.
(2) (10pts) (Continuing (1).) Let S be the isometric shift on ℓ1(N), defined by S(x)n+1 = xn for

all n ∈ N, S(x)0 = 0. Prove that for every x ∈ ℓ1(N), the set of translates {Snx|n ∈ N} spans
a dense subset of ℓ1(N) if and only if the power series f(z) =

!∞
n=0 xnz

n has no zeros on D̄.

Solution. Let S denote the linear span of {Snx|n ∈ N}.
By (1), f(z) =

!∞
n=0 xnz

n has no zeros on D̄ if and only if f(z) ∈ GL(A) if and only if
x ∈ GL(ℓ1(N)). It therefore suffices to prove that the linear span of S is dense in ℓ1(N) if and
only if x ∈ GL(ℓ1(N)). Here is a proof.

If the linear span of S is dense in ℓ1(N), then there is a finite linear combination y =!
n λnS

nx such that ‖y− 1‖ < 1. Therefore y is invertible, and (since ℓ1(N) is abelian) so is x.

Conversely, if x is invertible, then x−1 ∈ S. Let ym ∈ S be such that ‖ym − x−1‖ < 1/m.
Every finitely-supported element of ℓ1(N) is of the form w =

!
n λnS

n =
!

n λnS
nx−1x. For

every m, wm = (
!

n S
n)ym ∈ S, and limm wmx = w. Since w was an arbitrary finitely

supported element and such elements are dense in ℓ1(N), the conclusion follows.
(3) (10pts) Let Mn(C) denote the Banach algebra of n× n complex matrices, with respect to the

operator norm. Suppose that A is a unital Banach algebra and n ≥ 2. Prove that every
surjective homomorphism ϕ : A → Mn(C) is continuous.2

1There was a misleading typo in this question, stating that A was a Banach subalgebra. It is not; it is a proper dense
subalgebra. Please let me know if this affected you.

2The special bonus offer is still valid: Is the assertion true without the assumption that ϕ is onto?
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Solution. Let J = ker(ϕ). Then (by an isomorphism theorem from algebra) A/J is isomorphic
to Mn(C). Since Mn(C) is simple, so is A/J and therefore J is a maximal ideal.

[This was mentioned in class in passing; in case I did not provide a proof, here it is: Suppose
J is not a maximal ideal. Since A is unital, there is a maximal proper ideal I ⊇ J . Then ϕ[I]
is a proper ideal in Mn(C); contradiction.]

Since A is unital, every maximal ideal is closed. Therefore the quotient map π : A → A/J is
continuous (a basic Banach space theory fact). Let ϕ̃ denote the isomorphism between A/J and
Mn(C) given by ϕ̃(a+J) = ϕ(a). Then ϕ = ϕ̃◦π, and it suffices to check that ϕ̃ is continuous.
But it is an isomorphism between finite-dimensional (more precisely, n2-dimensional) Banach
spaces. Since all norms on a finite dimensional space are equivalent, ϕ̃ is continuous.

(4) (10pts) Let H be ℓ2(N). Prove that the adjoint operation A '→ A∗ on B(H) is continuous in
the weak operator topology (WOT), but not in the strong operator topology(SOT).

Solution. It suffices to prove the continuity at 0. WOT-subbasic neighbourhoods of 0 in B(H)
are of the form Uξ,η = {a||(aξ, η)| < ε} for ε > 0 and ξ and η in H. The preimage of Uξ,η under
the adjoint map is {a||(a∗ξ, η)| < ε} = {a||(ξ, aη)| < ε} = {a||(aη, ξ)| < ε} = Uη,ξ.

Since ε, ξ and η were arbitrary, this proves that the preimage of every WOT-subbasic open
neighbourhood of 0 is WOT-open, hence the map is continuous at 0, Since it is conjugate linear,
it is WOT-continuous.

For the second part, let S denote the shift with respect to the standard orthonormal basis
(ξj) of H, and let an = (S∗)n for n ∈ N. Then an(ξj) = ξj−n if n ≤ j and an(ξj) = 0 if n > j.
Thus for every vector η ∈ H we have limn ‖an(η)‖ = 0. (If η has finite support, then an(η) = 0
for a large enough n. Every η can be approximated arbitrarily well by a vector with a finite
support, and therefore an(η) → 0 as n → ∞.)

Thus SOT- limn an = 0.
On the other hand, an(ξ0) = ξn, and therefore limn an(ξ0) does not exist (as a matter of fact,

limn an(η) exists iff η = 0). But SOT- limn an = b is equivalent to limn an(η) = b(η) for all η.
In particular, SOT- limn(an)

∗∗ ∕= 0∗ and the adjoint is not SOT-continuous.
(5) (10pts) Suppose that A is a commutative, unital, Banach algebra. Prove that the Gelfand map

is an isometry if and only if ‖x‖2 = ‖x2‖ for all x ∈ A.

Solution. Since ‖x2‖ = ‖x‖2 is clearly true in C(X), if ΓA is an isometry then ‖x‖2 = ‖x2‖
for all x ∈ A.

For the converse, assume ‖x2‖ = ‖x‖2 for all x ∈ A. By induction this implies that ‖x2n‖ =
‖x‖2n . Therefore r(x) = limn ‖xn‖1/n = limn ‖x2n‖2−n

= ‖x‖. Since r(ΓA(x)) = ‖ΓA(x)‖, this
implies ΓA(x) is an isometry.

(6) (10pts) Suppose that A is a unital Banach algebra generated by 1 and x. Prove that C \σA(x)
is connected.

Solution. Suppose otherwise. Let U be a bounded connected component of C \ σ(x). Fix
λ ∈ U . Since A is generated by x and 1, there are complex polynomials Pn(z) such that
limn ‖Pn(x)(x− λ)‖ = 1.

The Gelfand transform Γ sends A into a subalgebra of C(σ(x)). It sends x to the identify
function on σ(x) and a polynomial

!
n λnx

n to the restriction of the complex polynomial!
n λnz

n to σ(x). Thus Qn(z) = Γ(Pn(x)(x − λ)) are complex polynomials that uniformly
converge to 1 on σ(x). Also Qn(λ) = 0 for all n. By compactness of σ(x), for a large n we have
1 − Qn(ν) < 1/2 for all ν ∈ σ(x) but 1 − Qn(λ) = 0. In particular, Qn attains maximum on
σ(x) ∪ U in the interior of this set. This contradicts the maximum modulus principle.

(7) Let H be ℓ2(N).
(a) (5pts) Suppose that (Uλ)λ is a SOT-convergent net of unitaries, with limit A. Prove that

A is an isometry.
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Solution. We have SOT- limn Un = A if and only if limn Un(η) = A(η) (this is the norm
limit) for all η ∈ H. But ‖Un(η)‖ = ‖η‖ for all n and η, and therefore ‖A(η)‖ = η for all
η—but this means that A is an isometry.

(b) (5pts) Show that a SOT-limit of unitaries is not necessarily a unitary. (Hint: Consider
the unilateral shift on ℓ2(N), defined by A(ξ)n+1 = ξn for n ∈ N and A(ξ)0 = 0. Find a
sequence of unitaries Un that SOT-converges to A.

Solution. We can choose Un to be a permutation unitary, i.e., a unitary that permutes
the basis vectors. Let Un(ξj) = ξj+1 if j < n, Un(ξn) = ξ0, and Un(ξj) = ξj if j > n.
This is a unitary. For every basis vector ξj, we have Un(ξj) = ξj+1 for all large enough
n. Therefore limn Un(ξj) = ξj+1. By linearity, one verifies that limn Un and A agree on
the finite linear combinations of basis vectors. Since this is a dense set, we conclude that
limn Un(η) = A(η) for all η, and therefore SOT- limn Un = A as required.


