Math 6462, W22. Assignment # 1. Due date: January 31, 11:59pm.

- (1) (10pts) Consider the unital Banach algebra C([0,1]). Prove that the spectrum of $f \in C([0,1])$ is equal to the range of f. (Note that this is not about [0,1]—the analogous result holds when [0,1] is replaced with any compact Hausdorff space.)
- (2) (a) (3pts) Describe the set $X = \{\|1_A\| : A \text{ is a unital Banach algebra}\}$. (The answer should be a concrete description of a set of reals, such as $(-3, -2) \cup \{0\}$.
 - (b) (3pts) Prove that your description of the set X is correct. More precisely, prove that there is a Banach algebra A such that $||1_A|| = r$ if and only if $r \in X$, for every $r \in \mathbb{R}$.
 - (c) (4pts) For a unital Banach algebra A, consider the set $X_A = \{ |||1_A||| : ||| \cdot |||$ is a norm on A equivalent to the original one $\}$. Clearly $X_A \subseteq X$ for every A. Is there A such that $X_A \neq X$? Prove your claim.
- (3) In $\ell_2(\mathbb{N})$, for a vector ξ let ξ_n denote its *n*-th coordinate (in this course $0 \in \mathbb{N}$). Define $S \in B(\ell_2(\mathbb{N}))$ by $S(\xi)_{n+1} = \xi_n$ for all *n* and $S(\xi)_0 = 0$. This is a bounded linear operator (convince yourself that this is so, although it is not a part of the question).
 - (a) (3pts) Prove that $\sigma_p(S) = \emptyset$ (i.e., S has no eigenvalues).
 - (b) (3pts) Prove that $1 \in \sigma(S)$.
 - (c) (4pts) Prove that $\lambda \in \sigma(S)$ if and only if $|\lambda| \leq 1$.
- (4) Suppose that A is a unital Banach algebra. Let G_0 be the path-connected component of 1_A in GL(A). (That is, G_0 is the set of all $a \in GL(A)$ such that there is a continuous function $f: [0,1] \to GL(A)$ such that $f(0) = 1_A$ and f(1) = a.)
 - (a) (3pts) Prove that if ||x|| < 1 then $(1-x)^{-1} \in G_0$.
 - (b) (3pts) Prove that G_0 is open in GL(A).
 - (c) (4pts) Prove that G_0 is equal to the subgroup of all products of the form $\prod_{j=1}^n (1-x_j)^{-1}$, for $n \ge 1$ and x_1, \ldots, x_n of norm < 1.

¹Clearly this is not the correct answer