Math 6462, W22. Assignment \# 1. Due date: January 31, 11:59pm.
(1) (10pts) Consider the unital Banach algebra $C([0,1])$. Prove that the spectrum of $f \in C([0,1])$ is equal to the range of f. (Note that this is not about $[0,1]$ - the analogous result holds when $[0,1]$ is replaced with any compact Hausdorff space.)
(2) (a) (3pts) Describe the set $X=\left\{\left\|1_{A}\right\|: A\right.$ is a unital Banach algebra $\}$. (The answer should be a concrete description of a set of reals, such as $(-3,-2) \cup\{0\} .{ }^{1}$
(b) (3pts) Prove that your description of the set X is correct. More precisely, prove that there is a Banach algebra A such that $\left\|1_{A}\right\|=r$ if and only if $r \in X$, for every $r \in \mathbb{R}$.
(c) (4pts) For a unital Banach algebra A, consider the set $X_{A}=\left\{\| \| 1_{A}\| \|:\|\cdot\|\right.$ is a norm on A equivalent to the original one $\}$. Clearly $X_{A} \subseteq X$ for every A. Is there A such that $X_{A} \neq X$? Prove your claim.
(3) In $\ell_{2}(\mathbb{N})$, for a vector ξ let ξ_{n} denote its n-th coordinate (in this course $0 \in \mathbb{N}$). Define $S \in B\left(\ell_{2}(\mathbb{N})\right)$ by $S(\xi)_{n+1}=\xi_{n}$ for all n and $S(\xi)_{0}=0$. This is a bounded linear operator (convince yourself that this is so, although it is not a part of the question).
(a) (3pts) Prove that $\sigma_{p}(S)=\emptyset$ (i.e., S has no eigenvalues).
(b) (3pts) Prove that $1 \in \sigma(S)$.
(c) (4pts) Prove that $\lambda \in \sigma(S)$ if and only if $|\lambda| \leq 1$.
(4) Suppose that A is a unital Banach algebra. Let G_{0} be the path-connected component of 1_{A} in $\operatorname{GL}(A)$. (That is, G_{0} is the set of all $a \in \operatorname{GL}(A)$ such that there is a continuous function $f:[0,1] \rightarrow \mathrm{GL}(A)$ such that $f(0)=1_{A}$ and $f(1)=a$.)
(a) (3pts) Prove that if $\|x\|<1$ then $(1-x)^{-1} \in G_{0}$.
(b) (3pts) Prove that G_{0} is open in $\operatorname{GL}(A)$.
(c) (4pts) Prove that G_{0} is equal to the subgroup of all products of the form $\prod_{j=1}^{n}\left(1-x_{j}\right)^{-1}$, for $n \geq 1$ and x_{1}, \ldots, x_{n} of norm <1.

[^0]
[^0]: ${ }^{1}$ Clearly this is not the correct answer

