
COMBINATORIAL SET THEORY FOR C∗-ALGEBRA ERRATA

This is the list of all errors found in [5] known to me. It includes clarifications
of some of the obscurities found in the text, as well as more elegant rewritings of
some of the (correct) proofs. The list will be updated as needed.

In the last line of the proof of Lemma 1.1.2. ‖c‖= 1 should be ‖c‖ ≤ 1.

Lemma 1.2.8. x should be ξ .

Lemma 1.4.8. It is not necessary to assume that a is a normal or a contraction,
and ‖. is missing at the end of the statement. Also, the following stronger form of
this lemma is needed.

Lemma 1.4.8 For every *-polynomial f (x) there is a constant K f < ∞ such
that for every C∗-algebra A, every a ∈ A, and every b ∈ A we have ‖[ f (a),b]‖ ≤
K f ‖[a,b]‖.

For every compact S ⊆ C and every f ∈C(S) there is a constant K f < ∞ such
that for every unital C∗-algebra A, every normal a ∈ A with sp(a) ⊆ S, and every
b ∈ A we have ‖[ f (a),b]‖ ≤ K f ‖[a,b]‖.

Proof. First prove ‖[an,b]‖ ≤ n‖[a,b]‖ by induction on n. Therefore ‖[(a∗)n,b]‖ ≤
‖[a,b]‖ for all n. If f (x) = ∑

n
j=0 α jx j, this implies ‖[ f (a),b]‖ ≤ ∑

n
j=1 j(|α j|+

|β j|)‖[a,b]‖, and K f := ∑
n
j=1 j(|α j|+ |β j|) is as required.

For the second part, use the Stone–Weierstrass theorem to approximate f by a
polynomial, and then the first part. The assumption that the algebra A be unital is
used to assure that C∗(a,1)∼=C(S) is included in A.

Lemma 1.5.7 (4). e should be ε .

The proof of Corollary 1.5.8, second line. ‖pi − pi+1‖ < 2 should be ‖pi −
pi+1‖< 1.

In the paragraph following Definition 1.6.7. . . . countable directed set without a
maximal element has a cofinal subset isomorphic to (N,≤).

Proof of Corollary 1.6.12. xn should be a1/2((b∗1b1) + 1/n)−1b∗1b1, and the re-
mainder of the proof should be changed by replacing a with a1/2. This also makes
the last sentence unnecessary.

Proof of Corollary 1.6.13. In first and second lines of the proof, v f (|b|) should
be vg(|b|). Also, a period is missing at the end of this line.

Definition 1.9.1. At the end, λ ≤ µ should be λ < µ .

Date: July 31, 2021.
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Exercise 1.11.6. The hint is misleading; spB(b) ⊇ spA(b) is trivial. A better hint
would suggest to first prove that GL(B) is a relatively clopen subset of GL(A).

Exercise 1.11.33: In 1, it is not necessary to assume that the C∗-algebra be abelian.
In 2, ‘scalar projections’ should be ‘nonzero scalar projections’.
The solution suggested by the hint is ok, but it is not the most straightforward

one; just ignore the hint.

Exercise 1.11.39. In the hint, add ‘identify H with K⊕K’

Add Exercise 1.11.39 1
2 . If a is a contraction, prove that

a(1−a∗a)1/2 = (1−aa∗)1/2a.

Exercise 1.11.40. In the hint, ‘identify H with K⊕K and try
(

a
√

1−aa∗√
1−a∗a −a∗

)
’.

page 72, line 7. implies (1−d)r ≈ε 0.

Proposition 3.2.11. (Starting with the paragraph preceding it.)
One can recover a simple C∗-algebra from its image under a c.p.c. order zero

map with a trivial kernel.

Proposition 3.2.11 Suppose A is a unital C∗-algebra, B is a C∗-algebra, and
ϕ : A→B is a c.p.c. map of order zero. Then there exist a C∗-algebra C and a com-
pletely positive map ψ : ϕ[A]→C such that ψ ◦ϕ : A→C is a ∗-homomorphism
whose kernel is equal to ker(ϕ). In particular, if ϕ[A] 6= {0} and A is simple then
ψ ◦ϕ[A] is isomorphic to A.

Proof. We may assume that B = ϕ[A]. Theorem 3.2.9 implies that there are a
positive contraction h ∈M (B) and a ∗-homomorphism π : A→{h}′∩M (B) such
that ϕ(a) = hπ(a). We will have C := π[A].

Since h is a positive contraction, the sequence h1/n, for n ∈ N, is an approxi-
mate unit for M (B) and it strictly converges to 1. This sequence belongs to the
commutant of C. For a and b in A and n ≥ 1 we have hπ(a) = hπ(b) if and only
if h1/nπ(a) = h1/nπ(b). Therefore the map ψn(ha) := h1/na is well-defined. It
is clearly completely positive. The sequence ψn(ha) strictly converges to a, and
therefore the map ψ(ha) = a is also completely positive and well-defined. Since
the sequence h1/n is increasing, we have kerψ = kerψn = kerϕ for all n.

For a ∈ A we have ψ ◦ϕ(a) = ψ(hπ(a)) = π(a) and ψ ◦ϕ is a unital ∗-ho-mo-
mor-phism on A whose kernel is ker(ϕ).

Proof of Proposition 3.6.5, (1) implies (2): No errors here, but an additional line
of explanation line could be helpful. By Lemma 1.7.4. (3), a positive functional θ

satisfies ‖θ‖= sup{θ(a)|0≤ a≤ 1}. Because of this, using the notation from the
proof of 3.6.5 (1)⇒ (2), we have that ϕ = ψ +(ϕ−ψ) implies ‖ϕ‖= ‖ψ‖+‖ϕ−
ψ‖, and therefore ϕ is a convex combination of the states 1

‖ψ‖ψ and 1
‖ϕ−ψ‖(ϕ−ψ).
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Theorem 3.7.2. The theorem as stated is not due to Glimm. What’s worse, unlike
Glimm’s theorem it is false.1 Here is the actual statement of Glimm’s theorem.

Theorem 0.1 (Glimm). Every non-type-I C∗-algebra has a C∗-subalgebra B that
has a quotient isomorphic to the CAR algebra.

The proof of this theorem is contained in the (correct part of) the proof given in
the book.2 The required corrections are listed below.

p. 108, line 2. ‘a partial isometry’ should be ‘an isometry’.

Lemma 3.7.3 (1). The first Ad should be Adw

Proof of Theorem 3.7.2 on p. 109. Replace the last three lines (i.e., the text
following ‘Proposition 3.7.5’) with ‘implies the desired conclusion.’

Exercise 3.10.12. This is Proposition 3.2.11.

Lemma 5.2.13. This lemma and its proof are equally silly, and they are not needed
in the text anymore; let’s just forget them.

Theorem 5.6.1. This theorem is stated for n-tuples of pure states. Its application
on p. 304 requires a stronger result, where one is given two infinite sequences of
pure states. This is Exercise 5.7.27 (2). Its proof is an extension of the proof of
Theorem 5.6.1.

Exercise 5.7.3. (1) and (2) are not equivalent. The exercise should read as:
Prove that (1) implies (2).
((2) is equivalent to A being prime; therefore we have the equivalence if A is

separable, but not in general by a result of Nik Weaver.)

Exercise 5.7.7. Prove that every nonsingular pure state on B(H) is a vector state.

Exercise 5.7.18. The first sentence should read as follows:
Assuming B is a unital C∗-subalgebra of a unital C∗-algebra A, prove the fol-

lowing.

Exercise 5.7.27 (2). Add a footnote with the following text: Used in the proof of
Proposition 11.2.1.

p. 173, line -8. A word is missing:
Hence factorial representations of type I are exactly the multiples of irreducible

representations

Proposition 8.6.5. ‘increasing’ should be ‘decreasing’. The result as stated is
correct. The given proof produces a decreasing function, but a minor modification
to the definition of L0 results in a proof of 8.6.5 as stated.

Example 9.1.4 (2). Fin× /0 = {X⊆ N2 : (∃m)(∀m′ ≥ m)(∀n)(m′,n) /∈ X}.

1It seems that my subconsciousness was trying to tell me something when it chose the Kopatchin-
skaya quote that opens this section.

2The proof does give more, but this is not a good place to dwell on this.
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Lemma 9.3.3. The formula at the end of the second line of the proof should read
as An \C⊆ An∩

⋃
j<nB j.

§9.7, second line: cofinal should be cofinite

Proof of Theorem 9.7.8. The function g as defined belongs to NN but not N↑N.
This does not affect the proof, but one could modify Φ by choosing Φ(E) to be any
element of N↑N which is ≥∗ g; for example, take g′ defined by

g′(m) = max(g(m),g(m−1)+1).

Exercise 9.10.28. Delete this.

Exercise 9.10.31. In (2), ‘countable ideal’ should be ‘countably generated ideal’.

Lemma 10.2.6 (1). As the anonymous referee of [6] pointed out, the proof that the
unitaries us form a Schauder basis for CCR(G) is problematic. Therefore the first
part of this lemma should be deleted (the second part is trivially true). I therefore
owe a verification that each of the uses of Lemma 10.2.6 (1) can be replaced by a
correct argument.

(a) p. 282, in the proof of Lemma 10.2.7: The linear span of us is dense in
CCR(G), and this is all that is needed.

(b) p. 283, in the proof of Lemma 10.2.10. One way to fix the argument is to
prove the analogue of [6, Corollary 2.7], asserting that if X ⊆ [V ]<ℵ0 is a subgroup
(with G = (V,E)), then a = ∑s λsus belongs to CCR(G,X) if and only if λs = 0 for
all s /∈ X . (This is really a special case of [6, Corollary 2.7].)

(c) p. 285, the end of the proof of Proposition 10.2.13: again it suffices to know
that the linear span of us is dense in CCR(G).

(d) p. 286 ditto.
(e) The assertion that CCR(G) has a Schauder basis, repeated on p. 275 and p.

279, can be deleted with no harm to anything but my ego.
(I don’t know whether us do form a Schauder basis or not, but Pavlos Motakis

provided an example of a pair of Banach spaces showing that the argument used in
the proof of Lemma 10.2.6 is faulty.)

p. 285. A left curly bracket is missing in the definition of F+; it should read as

F+ := {{(ξ ,0),(ξ ,1)} : ξ ∈ F \{ξn−1}}∪{(ξn−1,0),∗}

p. 304, line 1. Theorem 5.6.1 should be Exercise 5.7.27 (2).

Proposition 12.3.4. add ‘If λ ≤ κ are cardinals and. . . ’

Proposition 12.3.5. add ‘If λ ≤ κ are cardinals and. . . ’

Exercise 12.6.13. The short proof of Lemma 12.4.4 suggested here is circular. . . and
there are even shorter circular proofs of virtually anything. Let’s stick to the
medium-length proof given in the text.
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Lemma 13.1.5. In the sketch of the proof that the multiplier algebra M (A) is the
strict completion of A I assumed that the relevant nets have the same index set. Not
only that there is no reason why this should be true, but since all Cauchy nets in
A don’t form a set (one has to consider arbitrary index sets), one cannot proceed
to define a completion in this way. Instead, one has to consider the space of all
strictly Cauchy filters over A. A proof of how this can be done for an arbitrary weak
topology induced by a family of seminorms can be found in Gabriel Nagy’s lecture
notes (https://www.math.ksu.edu/ nagy/func-an-F07-S08.html, lecture TVS IV.). In
our setting there is an extra hurdle, since we need to assure that the norm on M (A)
is well-defined. The details are included below. Once the completion is defined, one
can revert back to nets and the proof works as indicated.

The idea for the following proof was adapted from [9].

Lemma 13.1.4 1
3 Suppose that F is a family of seminorms on a vector space X.

Then there is a vector space X̃ with the following properties.
(1) It contains X as a linear subspace.
(2) Every ρ ∈F extends to a seminorm ρ̃ on X̃.
(3) Every Cauchy net in X̃ converges.
(4) The subspace X is dense in X̃ with respect to the weak topology induced

by F̃ := {ρ̃|ρ ∈F}.
If X is an algebra with involution, then X̃ has the structure of an algebra with
involution. The space X̃ is called the completion of X .

Given the correct setup, the proof is analogous with the construction of the com-
pletion of a metric space. Since all Cauchy nets on a set do not form a set, we will
construct X̃ as the space of (equivalence classes of) Cauchy filters on X .

Definition 13.1.4 2
3 Suppose that F is a filter on a space X equipped with a family

of seminorms F .
(1) The filter F converges to x∈ X if for every ρ ∈N and every ε > 0 we have
{y ∈ X |ρ(x− y)< ε} ∈ F.

(2) The filter F is Cauchy if for every ρ ∈ N and every ε > 0 there exists
Y ∈ F such that |ρ(x− y)|< ε for all x and y in Y .

Proof of Lemma 1.13.4 1
3 . Let CF(X) be the set of all Cauchy filters on X . On this

set define the algebraic operations in the natural fashion (with the sum Y +Z :=
{y+ z|y ∈ Y,z ∈ Z}, and similarly defined λY for a scalar λ ):

F+G := {F +G|F ∈ F,G ∈G}
λF := {λF |F ∈ F}.

Standard ε,δ arguments show that if F and G are Cauchy filters, then so are F+G
and λF.

For ρ ∈F we define ρ̃ : CF(X)→ C as follows. Fix F ∈ CF(X). Since it is
Cauchy, there exists λ ∈ C such that for every ε > 0 the set

Uρ,λ ,ε := {x ∈ X ||ρ(x)−λ |< ε}
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belongs to F. If this applies, we write limx→F ρ(x) for λ , and define

ρ̃(F) := lim
x→F

ρ(x).

It is straightforward to check that ρ̃ is a seminorm on CF(X).
On CF(X) define the relation

F≈G⇔ F+(−1)G converges to 0.

A calculation shows that this is an equivalence relation which is a congruence
with respect to addition and multiplication by scalars, as well as for each ρ̃ ∈F .
Therefore we can identify ρ̃ with a seminorm on CF(X)/≈. Finally, embed X into
the quotient CF(X)/≈ by sending x to the principal filter

Fx := {Y ⊆ X |x ∈ Y}.

A calculation shows that X̃ := CF(X)/ ≈ is a linear space, that each ρ̃ is a semi-
norm on X̃ , that X̃ is complete with respect to F̃ , and that the copy of X inside X̃
is dense.

We’ll now prove that X̃ is complete with respect to the weak topology induced
by F̃ . Fix a Cauchy net in X̃ . Lift it to a net in CF(X), Fµ , for µ ranging over
some directed set M. Since the net is Cauchy, for every ρ ∈N the limit

Φ(ρ) := lim
µ

ρ̃(Fµ)

exists. For F bN and ε > 0 fix µ = µF,ε such that for ν > µ and ρ ∈ F we have
ρ̃(Fµ +(−1)Fν) < ε/2. Fix Y ∈ Fµ such that maxρ∈F supx,y∈Y |ρ(x− y)| < ε/2
and fix y ∈ Y . Then the set

ZF,ε := {z ∈ X |max
ρ∈F
|ρ(z− y)|< ε}

belongs to Fν for all ν ≥ µ . The family {ZF,ε |F bN ,ε > 0} has the finite in-
tersection property, since each of its finite subsets belongs to Fν for some ν ∈M.
Let G be the filter generated by this family. By the choice of the generators, it
is a Cauchy filter on X . Also, for every ρ ∈ N and ε > 0, if µ ≥ µ{ρ},ε then
ρ̃(Fµ +(−1)G)< ε , and therefore G/≈ is the limit of the Cauchy net (Fµ).

In the case when X is an algebra with an involution ∗, on CF(X) we can define
(writing FG := {xy|x ∈ F,y ∈ G} and F∗ := {x∗|x ∈ F}):

FG := {FG|F ∈ F,G ∈G},
F∗ := {F∗|F ∈ F}.

Standard ε,δ arguments show that if F and G are Cauchy filters, then so are FG
and F∗. Arguments analogous to those in the case when X was a vector space show
that in this case X̃ is an algebra.

Lemma 13.1.5 The completion M (A) of A in the strict topology is equipped
with a unital C∗-algebra structure such that A is an essential ideal in M (A).
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Proof. Applying Lemma 13.1.4 1
3 to A and F := {ρh,λh|h ∈ A}, we obtain the

algebra M (A) := Ã.
In order to define a norm on M (A), fix an approximate unit E for A.

Claim. If F is a Cauchy filter on A, then both ‖F‖λ := supe∈E limx→F λe(x) and
‖F‖ρ := supe∈E limx→F ρe(x) are finite and equal to one another.

Also, ‖F‖ := ‖F‖λ defines a norm on M (A) that satisfies the C∗-equality.

Proof. Suppose that supe∈E limx→F λe(x) = ∞. For m ∈ N fix em ∈ E such that
limx→F λem(x) > 22m. Let e := ∑

∞
m=0 2−m−1em. Fix K > limx→F λe(x) and m such

that 2m > K.
Let Y ∈ F be such that every y ∈ Y satisfies λe(y) < K and λem(y) > 22m. Fix

y ∈ Y . Since e≥ 2−mem, we have K > ‖ey‖> 2−m‖emy‖> 2m; contradiction.
This proves that ‖F‖λ is well-defined. The mirror image of this argument shows

that ‖F‖ρ is also well-defined.
Standard ε,δ arguments, used with the C∗-equality, show that ‖F‖2

λ
= ‖FF∗‖λ

and ‖F‖2
ρ = ‖FF∗‖ρ . Since clearly ‖FF∗‖λ = ‖FF∗‖ρ , this implies ‖F‖λ = ‖F‖ρ

and that ‖F‖= ‖F‖λ satisfies the C∗-equality.

Given that the proof of the Claim has had an added bonus—the norm ‖F‖ sat-
isfies the C∗-equality—the reader may still have energy and interest to go over a
proof that the algebraic operations are continuous with respect to this norm. For
this, note that (using the fact that E is a net) the norm defined in Claim satisfies

‖F‖= lim
e→E

λe(F) = lim
e→E

ρe(F).

Using this ε,δ arguments, a relentless reader can easily check that the operations
are norm-continuous. This remark applies to the verification of the completeness
of the norm, and completes the proof.

Proposition 13.2.1. . . . unique faithful representation. . .

Lemma 13.1.8. Part (1) is false, and it was never used. The proof of (1) given in
the text is a proof of the (useful) part (2) of the lemma.

p. 369, the paragraph following the proof of the Claim. The use of Lemma 1.4.8
(and the lemma itself, see above) should be made more precise. Here is the correct
text

By a proof similar to the proof of Lemma 1.4.8, for every ∗-polynomial P(x̄)
with coefficients in C there is a universal constant K < ∞ depending only on P(x̄)
such that

‖[P(b̄),a]‖ ≤ K max
c
‖[c,a]‖,

where c ranges over the coefficients of P and the entries of b̄. By applying the
second part of Lemma 1.4.8, there is a continuous function g : (0,1]→ (0,1] such
that. . .
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The proof of part (3) of the Claim on page 370. The assertion that “This implies
‖ξn− an f 2

n ξn‖ < 2ε” on p. 371 in this proof is not quite clear. Here is the proof,
complete with the much needed details.

(3) If limsupn ‖an f 2
n ‖ = 0 there is nothing to prove. We may therefore assume

r := limsupn ‖an f 2
n ‖ is nonzero. By replacing am with am/r, we may assume that

limsupm ‖am‖= 1. In addition, |‖an‖−‖an f 2
n ‖|→ 0 implies limsupm ‖am f 2

m‖= 1.
Fix ε > 0 and n such that 1− ε < ‖an‖ < 1+ ε , 1− ε < ‖an f 2

n ‖ < 1+ ε , and
‖an+1‖< 1+ε . Let ξ 0

n be a unit vector that satisfies ‖an f 2
n ξ 0

n ‖> ‖an f 2
n ‖−ε . If pn

is the support projection of fn, then ξn := ‖pnξ 0
n ‖−1ξ 0

n still has the property of ξ 0
n

and in addition fmξn = 0 for all m > n+1.
We have ‖an f 2

n ξn‖> ‖an f 2
n ‖− ε > 1−3ε , and therefore

( f 4
n ξn|ξn) = ‖ f 2

n ξn‖> (1−2ε)‖an‖−1 > 1−2ε/(1+ ε)> 1−3ε.

Since 0≤ fn ≤ 1, we also have f 4
n ≤ f 2

n , and

‖ξn− f 2
n ξn‖= ‖ξn‖2−2( f 2

n ξn|ξn)+( f 4
n ξn|ξn)< 1− ( f 2

n ξn|ξn)< 3ε.

Also, f 2
n+1 ≤ 1− f 2

n hence ‖ f 2
n+1ξn‖ < 3ε . Together with ∑m≥n+2 f 2

mξn = 0 and
‖an+1‖< 1+ ε , this gives

‖∑m≥n am f 2
m‖ ≥ ‖an f 2

n ξn‖−‖an+1 f 2
n+1ξn‖> ‖an f 2

n ‖−5ε.

Since this holds for arbitrarily large n and the sequence ∑m≤k f 2
m, for k ∈ N, is an

approximate unit for A, we have ‖π(∑m am f 2
m)‖ ≥ 1− 3ε‖am‖. Since ε > 0 was

arbitrary, ‖π(∑m am f 2
m)‖ ≥ 1 = limsupn ‖an f 2

n ‖, as required.

Exercise 13.4.15. The C∗-algebras A and B have to be assumed to be separable.

The second claim in the proof of Theorem 14.2.1, p. 353. In the second line of
the proof, ‖(pX+ pX)c‖ should be ‖(pX+ pY)c‖.

Exercise 15.6.6. Add the assumption cd = 0. (This is necessary. unless A is unital:
Otherwise one could take c = d self-adjoint and nonzero in the annihilator of A.)

Exercise 15.6.11. The second sentence in the question should read as
If c ∈C satisfies Jc = {0} then f can be chosen to satisfy f c = 0.

Exercise 15.6.18. C(βN\N) should be C.

p. 396, line 2. ‘χ(M)-saturated’ should be ‘κ-saturated, where κ is the density
character of M.’

p. 407, in (2). j ∈ Y j should be j ∈
⋃

i≤ j Yi.

p. 407, in the definition of Y2. m(3) should be m.

p. 407, in the definition of Yk+1. m̄(k+2) should be m.

Exercises 16.8. Countably (in)complete ultrafilters were defined before Exercise 16.8.2,
but used earlier.

Exercise 16.8.2. incomplete should be complete.
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§17.1. In the fourth line of 17.1, . . . certain inverse system. . .

Claim in the proof of Proposition 1.7.11. If α is a countable limit ordinal. . .

The proof of Lemma 17.1.9. The second half of the last sentence of the proof
should be replaced with the following, somewhat more informative, text.

By Lemma 9.7.6, every a ∈ F [E] can be written as a sum of an element of
D [Eeven], an element of D [Eodd], and a compact element. Also, both D [Eeven] and
D [Eodd] are included in F [E]. Therefore limn diam(sp(wn)) = 0 is equivalent to
u∼E v, completing the chain of equivalences.

Theorem 17.1.12. . . . at least 2ℵ1 . . .

Corollary 17.1.13. . . . at least 2ℵ1 . . .

Theorem 17.1.15. . . . at least 2ℵ1 . . .

Theorem 17.2.3 and its proof.
(1) In the statement of Theorem 17.2.3, ‘von Neumann algebras’ should be

replaced with ‘C∗-algebras’ and ‘Borel-measurable function’ should be re-
placed with ‘uniformly bounded Borel-measurable function’.

(2) In the proof, Θ′ is defined by using Bochner integral. (This is the ana-
log of Lebesgue integral for Banach space-valued functions; see e.g., [2,
Appendix E]).

(3) It should be pointed out that Θ′ itself is Borel-measurable and uniformly
bounded. (This was proved in [8, p. 7].)

p. 429, line 9. Θ′(g) should be |Θ′(g)|.

p. 429, line 10. Θ′(g)−1 should be |Θ′(g)|−1.

The proof of Lemma 17.4.5. All three instances of DX̃ should be replaced with
DX.

Theorem 17.2.6. Replace ‘von Neumann algebra’ with ‘C∗-algebra’.

Proof of Theorem 17.2.6. Eager to use the full power of the Burger–Ozawa–Thom
Theorem 17.2.3, I turned a correct proof given in [8] into a seemingly more elegant,
albeit incorrect, one (needless to say, this was entirely my fault). The proof of
Theorem 17.2.6 should be replaced by the following hybrid of the two proofs.

Proof. By Theorem 17.2.3, there is a Borel-measurable Λ : U(Mm(C))→ A such
that Λ(uv) = Λ(u)Λ(v) for all u and v, and ‖Λ−Θ‖ ≤ 4ε . By replacing A with
a C∗-algebra generated by the range of Λ, we may assume that A is separable.
Therefore Λ is a Borel-measurable homomorphism between Polish groups. By
Pettis’s Theorem ([7, Theorem 9.10]), Λ is continuous.

The continuity of Λ implies that if a ∈ Mm(C) is self-adjoint, then the one-
parameter group of untiaries Λ(exp(ira)), for r ∈ R, is norm-continuous in r.
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By Stone’s Theorem ([10, Theorem 5.3.15], and the observation that the norm-
continuity implies S is bounded) there exists Λ̃(a) ∈ Asa such that

Λ(exp(ira)) = exp(irΛ̃(a))

for all r ∈ R.

Claim. (1) Λ̃(1) = 1.
(2) If p is a projection, then Λ̃(p) is a projection.

Proof. The proofs of both parts use the same idea. Assume that b := Λ̃(1) is not 1,
and therefore sp(b) 6= {1}. Fix λ ∈ sp(b) and s ∈ R such that s(1−λ ) = π . Then
exp(is) = Θ(exp(is))≈ε exp(isb) but Lemma 1.4.7 implies

‖exp(is)− exp(isb)‖ ≥ |exp(is)− exp(−iλ s)|= |exp(iπ)|= 2;

contradiction. Now suppose Λ̃(p) is not a projection. Fix λ ∈ sp(Λ̃(p) \ {0,1}).
Then {exp(i2kπλ )|k ∈ Z} is a nontrivial subgroup of T, and some k ∈ Z satisfies
|exp(i2kπλ )− 1| ≥

√
2. But exp(ikπ p) = 1, hence exp(ikπΛ̃(p)) ≈ε 1, while

Lemma 1.4.7 implies ‖exp(ikπΛ̃(p))−1‖ ≥
√

2; contradiction.

For a projection p let
up := exp(iπ p)

(equivalently, up = 1−2p).

Claim. Suppose p and q are projections.
(1) We have Λ̃(p) = 1

2(1−Λ(up)).
(2) If p and q are Murray–von Neumann equivalent, then so are Λ̃(p) and Λ̃(q).
(3) If p and q commute, then so do Λ̃(p) and Λ̃(q).
(4) If pq = 0, then Λ̃(p)Λ̃(q) = 0 and Λ̃(p+q) = Λ̃(p)+ Λ̃(q).
(5) If ∑ j<m p j = 1 for projections p j, for j < m, then ∑ j<m Λ̃(p j) = 1.

Proof. (1) The equivalent formula, Λ(up) = 1− 2Λ̃(p), follows from the defini-
tions.

(2) By the first claim, Λ̃ sends p and q to projections. Since p and q belong to
Mm(C), Murray–von Neumann equivalence coincides with the unitary equivalence.
If w is a unitary such that wpw∗ = q, then wupw∗ = uq and a simple computation
using (1) shows that Λ(w) implements Murray-von Neumann equivalence of Λ̃(p)
and Λ̃(p).

(3) Immediate from (1) and the equivalence of [p,q] = 0 and [up,uq] = 0.
(4) We have pq= 0 if and only if p+q is a projection, if and only if upuq = up+q;

therefore this follows from (1).
(5) This follows immediately from the first claim and (4).

Let τ be the unique tracial state on Mm(C) and fix a faithful tracial state σ on A.
(Since A is finite-dimensional, it has a faithful tracial state.) Our next task is to
prove τ(u) = σ(Λ(u)) for every unitary u in Mm(C). The spectral theorem implies

u = ∑ j<m exp(iλ j)p j = ∏ j<m exp(iλ j p j),
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where p j are rank-1 projections and λ j are the real numbers such that exp(iλ j)
are the eigenvalues of u (the eigenvalues of multiplicity n are repeated n times).
Since the p j are Murray–von Neumann equivalent, the second Claim implies that
all Λ̃(p j) are Murray–von Neumann equivalent and ∑ j<m Λ̃(p j) = 1. Therefore
σ(Λ̃(p j)) = 1/m for all j.

Let a := ∑ j<m λ j p j, so that u = exp(ia). Then for all r ∈ R we have (using the
orthogonality of p j’s and the orthogonality of Λ̃(p j)’s as needed)

exp(irΛ̃(a)) = Λ(exp(ira)) = Λ(∏ j<m exp(irλ j p j))

= ∏ j<m Λ(exp(irλ j p j)) = ∏ j<m exp(irλ jΛ̃(p j))

= exp(ir ∑ j<m λ jΛ̃(p j)).

By taking logarithms, Λ̃(a)=∑ j<m λ jΛ̃ j p j and Λ(u)=∑ j<m exp(iλ j)Λ̃(p j). Since
σ(Λ̃(p j)) = 1/m = τ(p j) for all j, we have τ(u) = 1

m ∑ j<m exp(iλ j) = σ(Λ̃(u)).
By Lemma 17.2.4, Φ(∑ j<4 λ ju j) := ∑ j<4 λ jΛ̃(u j) is a well-defined ∗-homomor-
phism.

Also, ‖Φ(a)−Θ(a)‖ ≤ 4supx∈U(Mm(C)) ‖Φ(u)−Λ(u)‖ ≤ 8ε , as required.

Definition 17.3.3. . . . if its restriction to the unit ball has a lifting which is Borel-
measurable with respect to the strict topology (this is a Polish topology).

The statement of Lemma 17.4.8. It should be emphasized that Θ is assumed to
be continuous when the codomain, B(H)1, is considered with respect to the strong
operator topology (although the proof works with the weak operator topology).

The proof of Lemma 17.4.8; this is a simplified proof (using the easy Exer-
cise 1 below), posted March 15, 2021. Missing details and typos added up to an
impasse. The proof of Lemma 17.4.8 should be replaced with the following.

We recursively find an increasing sequence (n( j)) j, s( j) ∈ D(n( j),n( j+1)) (with
n(0) := 0), and an increasing sequence of finite-rank projections (r j), for j ∈ N,
so that the following holds for all j, and all x and y in DN\(n( j),n( j+1), with z := x �
(n( j)+1)+ y � [n( j+1),∞):

(1) ‖(Θ(y+ s( j))−Θ(z+ s( j)))(1− r j)‖ ≤ 2− j,
(2) ‖(1− r j)(Θ(y+ s( j))−Θ(z+ s( j)))‖ ≤ 2− j,
(3) ‖(Θ(x+ s( j))−Θ(z+ s( j)))r j‖ ≤ 2− j,
(4) ‖r j(Θ(x+ s( j))−Θ(y+ s( j)))‖ ≤ 2− j.

Set n(0) := 0. Suppose that k ≥ 0 and that n( j), s( j), and r j, for j < k, have been
chosen to satisfy (1)–(4).

Towards a contradiction, assume that n(k) and s(k) that satisfy (1) cannot be
found. We will find an increasing sequence m(i) ∈ N and t(i) ∈ D[m(i),m(i+1)), so
that m(0) := n(k−1)+1, and for every i there are a(i) and b(i) in D[0,n(k−1)) and
c in D(m(i+1),∞) such that pi := projspan{ξl :l≤i} (with ξl being the orthonormal basis
for H fixed earlier) satisfies

‖(Θ(a(i)+∑l≤i t(l)+ c)−Θ(b(i)+∑l≤i t(l)+ c))(1− pi)‖> 2−k+1.
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Suppose that a(i), b(i), t(l), and m(l′), as required have been chosen for l ≤ i
and l′ ≤ i+ 1. By the assumed failure of (1) for s(i) := ∑l≤i t(l), there exists c in
D[m(i+1),∞ such that

‖(Θ(a+ s(i)+ c)−Θ(b+ s(i)+ c))(1− pi)‖> 2−k+1

By the continuity of Θ, there is a large enough m(i+2) such that with

t(i+1) := cp[m(i+1),m(i+2)),

for all d in D(m(i+2),∞) we have

‖(Θ(a(i)+∑l≤i+1 t(l)+d)−Θ(b(i)+∑l≤i+1 t(l +1)+d))(1− pi)‖> 2−k+1.

This describes the recursive construction of a(i), b(i), and t(i) as required.
Since there are only finitely many choices for a(i) and b(i), some pair ã, b̃ ap-

pears as a(i),b(i) infinitely often. Let t := ∑l t(l) (the partial sums strongly con-
verge to an element of D). Then

‖(Θ(ã+ t)−Θ(b̃+ t))(1− pi)‖> 2−k+1

for all i, and Θ(ã+ t)−Θ(b̃+ t) is not compact. But (ã+ t)− (b̃+ t) has finite
rank. This contradicts the assumption that Θ lifts Φ. We can therefore choose
n0(k), s0(k)∈D(n(k),n0(k)], and r0

k such that (1) holds. Note that this condition holds
when s0(k) is end-extended and rk is increased.

An argument analogous to the one used to secure (1) shows that we can find
n1(k)> n0(k), s1(k) ∈ D(n(k),n1(k)] extending s0(k), and rk such that (2) holds. This
extension does not affect the condition (1).

Enumerate Dn(k−1)+1 as a(i), for i<m. Since rk has finite rank, each of the func-
tions x 7→ Θ(x)rk and x 7→ rkΘ(x) is continuous with respect to the norm topology
in the range. As in the proof of Theorem 9.9.1, recursively, in m steps, choose
n(k) ≥ n1(k) and s(k) ⊇ s1(k) to produce a basic open set [(n(k− 1),n(k)),s(k)]
such that both (3) and (4) hold for all x and y that satisfy x � (n(k− 1)+ 1) = y �
(n(k−1)+1) = a(i) for some i < m. This describes the recursive construction of
n(i), s(i), and ri as required.

Let X := {n( j) : j ∈N}. The sum s := ∑ j s( j) strongly converges to an element
of DN\X. We claim that for every x ∈ DX and every j ∈ N we have

(1) ‖[Θ(x+ s)−Θ(s),r j]‖ ≤ 2− j+2.

To prove this, using (1)–(4) and writing x− := x � (n( j)+1), x+ := x � [n( j+1),∞),
and ε := 2− j),

(Θ(x+ s)−Θ(s))r j ≈ε (Θ(x−+ s)−Θ(s))r j ≈ε (Θ(x−+ s)−Θ(s))

≈ε r j(Θ(x−+ s)−Θ(s))≈ε r j(Θ(x+ s)−Θ(s)),

as required. Define Ξ j : Dn( j)→ (r j+1− r j)B(H)≤1(r j+1− r j) by

Ξ j(x) := (r j+1− r j)(Θ(s+ x)−Θ(s))(r j+1− r j).
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Fix x ∈ DX. By (1), we have ∑ j ‖[Θ(x+ s)−Θ(s),r j]‖ ≤ 4ε . By Exercise 1, the
function Ξ of product type determined by (Ξ j) satisfies Ξ(x)≈K Θ(x+ s)−Θ(s),
and is therefore a required lifting of Φ on DX.

Exercise 1. (1) Suppose that r is a projection. Then every operator a satisfies

‖[a,r]‖= ‖a− rar− (1− r)a(1− r)‖.
(2) Suppose that a ∈B(H), (r j) is an approximate unit for K (H) consisting

of projections, and ∑ j ‖[a,r j]‖< ∞.
Use (1) to prove that a−∑ j(r j+1− r j)a(r j+1− r j) is compact.

Lemma 17.5.8. The following lemma should be added at the end of §17.5, on p.
441.

Lemma 17.8. Suppose that E ∈ PartN, ue and uo are in U(`∞(N)), and Adue and
Aduo agree on D [E] modulo the compacts. Then there is w ∈ U(`∞(N)) such
that Adw agrees with Adue on D [Eeven] modulo the compacts and with Aduo on
D [Eodd] modulo the compacts.

Proof. The assumption implies that ueu∗o belongs to π[D [E]]′ ∩Q(H). By [11]
π[D [E]]′∩Q(H) = π[D [E]′], hence there is a ∈ D [E]′ such that a−ueu∗o is com-
pact. But (writing pi for pE

i ) D [E]′ = W∗(pi : i ∈ N) (see §9.7.1).
Fix λi ∈T, for i∈N, such that a=∑i λi pi (all infinite sums in this proof are SOT-

convergent). Define ηi ∈ T, for i ∈ N, recursively by setting η0 := 1, η2i+1 := η2i,
and η2i+2 := λ2i+1λ

−1
2i η2i+1 for i≥ 1.

Let w := ∑i ηi pi. It clearly belongs to U(`∞(N)).
Then wu∗e = ∑i η2i(p2i + p2i+1), hence it belongs to D [Eeven]′, and Adw and

Adue agree on D [Eeven]. Also, wu∗o−∑i η2i+1(p2i+1 + p2i+2) is compact, hence
π(wu∗o) belongs to π[D [Eodd]]′∩Q(H). Therefore Adw and Aduo agree on D [Eodd]
modulo the compacts.

Definition 17.6.1. (a) It should be specified that ‘Borel’ refers to the weak operator
topology on B(H)≤1.

(b) The last sentence should state the following.
A σ -narrow lifting on D [E] or D[E] and a σ -narrow ε-approximation on D [E]

or D[E] are defined analogously.

Example 17.6.2. In the first sentence ‘`∞/c0’ should be P(N)/Fin.
The second and third sentences should read as follows:
Let U be a nonprincipal ultrafilter on N. Define ϒ : P(N)→P(N) by ϒ(A) :=

N if A ∈U and ϒ(A) = /0 otherwise.

The proof of Lemma 17.6.3. This proof was wrong. Here is what it should have
been.

Proof. Throughout this proof B(H)1 is considered with respect to the weak oper-
ator topology, and ‘Borel’ refers to Borel sets with respect to this topology. We
will use the notation from Definition 17.4.1. It will also be convenient to use
the notation DX[E] and DX[E] with the intervals in E indexed by {0,1}<N and
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X⊆ {0,1}<N. Fix E so that limn min|s|=n |Es|= ∞. If X⊆ {0,1}<N is infinite and
included in a branch of {0,1}<N, then this branch is denoted B(X). Fix a discretiza-
tion D[E] of D [E]. The definition of a discretization depends on the indexing of
the intervals of E by N, but all that we need is that for every n and every s∈ {0,1}n

the set Ds is 2−n-dense in the unit ball of D{n}[E]. Also fix d ≥ (2ε)−1 and n≥ 1.
Let (omitting [E] when clear from the context)

X := {(X,a) : B(X) is defined and a ∈ DX}.

and let {(X,a),(Y,b)} ∈Md,n
0 if the following conditions are satisfied (writing pX

for pE
X):

(Md
0 1) B(X) 6= B(Y),

(Md
0 2) pXb = pYa, and

(Md,n
0 3) max(‖p[n,∞)(Φ∗(a)qY−qXΦ∗(b))‖,‖p[n,∞)(qYΦ∗(a)−Φ∗(b)qX)‖)> 1/d.

These conditions are symmetric and they define a partition [X ]2 = Md,n
0 ∪Md,n

1 . In
order to topologize X , identify (X,a) ∈X with

(B(X),X,a,qX,Φ∗(a)) ∈ {0,1}N×P({0,1}<N)×D×B(H)2
≤1

where {0,1}N, P({0,1}<N), and D are equipped with their standard compact met-
ric topologies and B(H)≤1 is equipped with the weak operator topology. Con-
sider X with respect to the subspace topology.

Claim. For all d and n, the partition [X ]2 = Md,n
0 ∪Md,n

1 is open.

Proof. The condition (Md
0 1) is open. Once it is satisfied, pXb and pYa are taking

values in the finite set ∏s∈X∩YD(s) and therefore (Md
0 2) is open relative to (Md

0 1).
Since the set {b : ‖p[n,∞)b‖> 1/d} is WOT-open, the condition (Md,n

0 3) is open.

It will be convenient to use OCA∞ in place of OCAT (see Theorem 8.6.6 and the
discussion preceding it). The conclusion of the following claim is the negation of
one of the alternatives of OCA∞.

Claim. For every d, there is no uncountable Z⊆{0,1}N such that some continuous
f : Z→X satisfies { f (a), f (b)} ∈Md,∆(a,b)

0 for all distinct a and b in Z.

Proof. Assume otherwise and fix d, Z ⊆ {0,1}N, and a continuous f : Z→X as
in (the negation of) the statement of the claim.

Since apY = bpX for all (X,a) and (Y,b) in H , there exists c ∈ D such that
cpX = a for all (X,a)∈H and ‖c‖ ≤ 1. (Let c(s) := a(s) for any (X,a)∈H such
that X ∈ [s].)

Fix δ < 1/(2d). Since Φ∗ lifts Φ, qXΦ∗(c)−Φ∗(a) and Φ∗(c)qX−Φ∗(a) are
compact for every (X,a) ∈H . Fix n = n((X,a) large enough so that

max(‖p[n,∞)(Φ∗(c)qX−Φ∗(a))‖,‖p[n,∞)(qXΦ∗(c)−Φ∗(a))‖)< δ .

By replacing Z with an uncountable set, we may assume that there is n such that
n = n(X,a) for all (X,a) ∈ Z. Since Z is uncountable, it contains y and z such
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that ∆(y,z) > n. Let (X,a) and (Y,b) to be the f -images of y and z. By the latest
displayed formula,

p[n,∞)Φ∗(a)qY ≈δ p[n,∞)qXΦ∗(c)qY ≈δ p[n,∞)qXΦ∗(b)

and therefore ‖p[n,∞)(Φ∗(a)qY−qXΦ∗(b))‖< 1/d. An analogous argument shows
that ‖p[n,∞)(qYΦ∗(a)−Φ∗(b)qX)‖< 1/d.

This implies {(X,a),(Y,b)} ∈Md,n
1 , contradicting ∆(y,z)> n.

By OCA∞ and the latest Claim, there are sets X d
n , for n ∈ N, so that each X d

n
is Md,n

1 -homogeneous and X ⊆
⋃

n X d
n . For distinct (X,a) and (Y,b) in X and

k ∈ N write

∆((X,a),(Y,b)) := min{k : (∃s ∈ {0,1}k)(s ∈ X∆Y

or (s ∈ X∩Y and a(s) 6= b(s)))}.
For k ∈ N let

ek := p[0,k).

For every n, fix a countable E d
n ⊆X d

n dense in the topology described after the
definition of Md,n

0 . Since Md,n
0 is open, the closure of any Md,n

1 -homogeneous set
is Md,n

1 -homogeneous. Fix any branch B̃ of {0,1}<N that does not belong to the
countable set {B(X) : (X,a) ∈

⋃
n E d

n }.
For all k and n, both sets {0,1}<k and D{0,1}<k are finite and the projection ek

has finite rank. Therefore the metric space {0,1}<k×D{0,1}<k×B(ek[H])1 is com-
pact. Choose Fk,n b E d

n so that for every (X,a) ∈ E d
n there exists (Y,b) ∈ Fk,n that

satisfies ∆((X,a),(Y,b))> k and

max(‖(Φ∗(pX)−Φ∗(pY))ek‖,‖(Φ∗(a)−Φ∗(b))ek‖)< 1/k.

Since E d
n is dense in X d

n , for every (X,a) ∈X d
n there exists (Y,b) ∈ Fk,n with

these properties.
For any infinite Y ⊆ N, the set

⋃
k∈Y Fk,n is dense in X d

n with respect to the
topology defined after Md,n

0 . Let k(0) := 0 and for j ∈ N choose k( j+1)> k( j) to
be the minimal such that (writing B̃ � k for the unique s in B̃ which satisfies |s|= k)

B̃ � k( j+1) 6= B(Y) � k( j+1) for all (Y,b) ∈
⋃

n≤kFk( j),n.

Let
X̃ := {B̃ � k( j) : j ∈ N}

and consider the compact metrizable space DX̃×B(H)≤1; it’s descriptive set the-
ory time again! For (Y,b) ∈X d

n and k ∈ N the set

W (Y,b,k) := {(a,c) ∈ DX̃×B(H)≤1 : (X̃,a) ∈X d
n , ∆((X̃,a),(Y,b))> k,

max(‖(Φ∗(b)− c)ek‖,‖(qX̃−qY)ek‖)≤ 1/k}
is closed. Therefore the set

Zn :=
⋂

j
⋃
{W (Y,b,k( j)) : (Y,b) ∈ Fk( j),n}

is Borel.
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Claim. For every n ∈ N the following holds.

(1) If (X̃,a) ∈X d
n then (a,Φ∗(a)) ∈Zn.

(2) If (a,c) ∈Zn, then qX̃c≈K
1/d Φ∗(a).

(3) The set Z ′
n := {(a,qX̃c) : (a,c) ∈Zn} is 2/d-narrow.

Proof. (1) The definition of Fk( j),n implies that for every j there is (Y,b) ∈ Fk( j),n
such that (a,Φ∗(a)) ∈W (Y,b,k( j)).

(2) Suppose that (a,c) ∈ Zn. We will prove ‖p[n,∞)(Φ∗(a)qX̃− qX̃c)‖ ≤ 1/d.
Assume otherwise, and fix δ > 0 such that

‖p[n,∞)(Φ∗(a)qX̃−qX̃)c‖> 2δ +1/d.

for some δ > 0. Choose j large enough to have

‖p[n,∞)(Φ∗(a)qX̃−qX̃c)ek( j)‖> 2δ +1/d

and j ≥max(n,2/δ ). Fix (Y,b) ∈ Fk( j),n such that (a,c) ∈W (Y,b,k( j)). Then

max(‖p[n,∞)(Φ∗(b)− c)ek( j)‖,‖p[n,∞)(qX̃−qY)ek( j)‖)≤ 1/k( j)< δ .

Also, {(X̃,a),(Y,b)} ∈Md
1 and (Md

0 1) holds. By the choices of k( j+1) and X̃, for
every s ∈ X̃ we have |s| ≤ k( j) or |s| ≥ k( j+1), hence ∆((X̃,a),(Y,b))> k( j) and
(Md

0 2) holds as well.
Therefore (Md,n

0 3) fails, and ‖p[n,∞)(Φ∗(a)qY−qX̃Φ∗(b))‖ ≤ 1/d. Temporarily
writing x≈δ ,k y if ‖(x− y)ek‖< δ , we have

p[n,∞)Φ∗(a)qX̃ ≈δ ,k( j) p[n,∞)Φ∗(a)qY ≈1/d p[n,∞)qX̃Φ∗(b)≈δ ,k( j) p[n,∞)qX̃c.

Therefore ‖p[n,∞)(Φ∗(a)qX̃− qX̃c)ek( j)‖ ≤ 2δ + 1/d; contradiction. Since δ > 0
was arbitrary, ‖p[n,∞)(Φ∗(a)qX̃−qX̃c)‖≤ 1/d. Since Φ∗(a)−Φ∗(a)qX̃ is compact,
Φ∗(a)≈K

1/d qX̃c follows.
(3) To prove that Z ′

n is 2/d-narrow, note that by (2) for all (a,c) and (a,c′) in Zn
we have qX̃c≈K

1/d Φ∗(a)≈K
1/d qX̃c′.

The sets Z ′
n , for n ∈ N, defined in Claim are Borel, each one of them is 2/d-

narrow, and they cover the graph of the restriction of Φ∗ to DX̃[E]. Since 2/d ≤ ε ,
this restriction is a σ -narrow ε-approximation of Φ on DX̃[E].

Lemma 17.7.1. There is nothing wrong here, although the statement of this lemma
may appear lopsided. Note that 1/d-narrow analytic sets exist and that in (2) there
is no assumption that Z has any relation to Φ whatsoever. Thus the proof proceeds
by fixing any 1/d-narrow analytic set and showing that if (1) fails then (2) holds.

p. 445–446. The sentence
Since W (a) is, being a continuous image of an analytic set, analytic, it has the

Property of Baire (§B.2.1).
is, although correct, out of place and should be deleted.
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page 446. The last displayed formula on this page,

Ξ0(a(0)+b(0)+ c)qA(0) 6≈K
1/d Φ∗(a(0)),

(not the previous one) should be tagged as (17.5).

p. 448. Both instances of F(d) ⊆ F(d + 1) on this page should be replaced with
F(d)⊇ F(d +1).

On the same page, lines −7 and −9, in the subscript k(d +1) should be k(d).

Corollary 17.8.4. Before the last sentence (‘Since Φ1 = ΦF. . . ’) insert the follow-
ing sentence (it will be Lemma 17.5.8, not Lemma 17.8):

By Lemma 17.8, the restriction of Φ to F [E] is implemented by a unitary for
every E ∈ PartN.

Exercise 17.9.11. Each of the instances of `∞/c0 should be changed to P(N)/Fin.

Notes to Chapter 17. (i) There is a gap in the proof of the main result of [1] (see
[3, Remark 11.A.6]). Fortunately, the result is correct since it has been proved by
Truss in [12]. To make the long story short:

In the last sentence in the comments on §17.1, the reference to [1] (i.e., [11] in
the text) should be replaced by a reference to (the main result of) [12].

(ii) The last sentence of the paragraph commenting on §17.2 should read as
follows.

Theorem 17.2.3 and Theorem 17.2.6 are taken from [8]. Weaker versions of
these results first appeared in [4, §5].

p. 456, item 13. ‘whose elements are’ should be ‘that includes’ (by applying the
Comprehension Scheme, one proves that the statement in item 13 as printed is
correct).

§A.6. In the first line, (M,ε) should be (M,rE).

Theorem B.2.14: in addition to the set {x ∈X|Ax is nonmeage}, the set {x ∈X|Ax
is comeager} is also analytic, and this is what is being used in the proof of Lemma
17.7.1.
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