Massive C*-algebras, Winter 2021. The fourth problem set. Solutions due April 5, 2021. Do any four of the following; note that some of the problems are closely related (\mathcal{U} stands for a nonprincipal ultrafilter on \mathbb{N} and A stands for a C*-algebra).

Exercise 1. Suppose that X and Y are Polish spaces and that f is a function from an uncountable $X_0 \subseteq X$ into Y. Prove that OCA_T there exists an uncountable $X_1 \subseteq X_0$ such that the restriction of f to X_1 is continuous.

Exercise 2. Suppose that X and Y are Polish spaces and that f is a function from an uncountable $X_0 \subseteq X$ into Y. Prove that there exists $f: X \to Y$ such that the restriction of f to $X_0 \subseteq X$ is discontinuous, for every X_0 of cardinality 2^{\aleph_0} .

Exercise 3. On $\mathcal{B}(H)_{\leq 1}$ consider the following three topologies: weak operator topology, strong operator topology, and strong^{*} operator topology. (Each of these spaces is Polish.) Prove that the Borel structures generated by these topologies coincide.

Exercise 4. Suppose that A is a σ -unital C*-algebra. Prove that if a *-homomorphism $\Phi: \ell_{\infty}/c_0 \to \mathcal{M}(A)/A$ has a C-measurable lifting then for an infinite $X \subseteq \mathbb{N}$ it has a continuous lifting on $\ell_{\infty}(X)_1$.

(More is true: The assumptions imply that Φ has a continuous lifting on ℓ_{∞} , but this requires a more intricate construction.)

For every $n \geq 2$ fix an isomorphism $\mathcal{Q}(H) \cong M_n(\mathcal{Q}(H))$ and consider the following assumption:

(V) Assume that every endomorphism of $\mathcal{Q}(H)$ is unitarily equivalent to the endomorphism $\Phi \otimes 1_n : \mathcal{Q}(H) \to M_n(\mathcal{Q}(H))$ for some n.

Exercise 5. Prove that (V) implies there are C^{*}-algebras A and B such that $A \hookrightarrow \mathcal{Q}(H), B \hookrightarrow \mathcal{Q}(H)$, but $A \otimes_{\alpha} B \not\to \mathcal{Q}(H)$ for any tensor product \otimes_{α} .

Exercise 6. Prove that (V) implies there is a countable inductive system (A_n) such that $A_n \hookrightarrow \mathcal{Q}(H)$ for all n, but $\lim_n A_n \not\hookrightarrow \mathcal{Q}(H)$.

The following exercise may be quite hard:

Exercise 7. Is there a *-homomorphism $\Phi: \ell_{\infty}/c_0 \to \ell_{\infty}/c_0$ that has a σ -narrow lifting, but no continuous lifting?