Massive C*-algebras, Winter 2021. the second problem set. Solutions due February 19, 20201. Do any four of the following (\mathcal{U} stands for a nonprincipal ultrafilter on \mathbb{N}).

Exercise 1. Find a separable C^{*}-subalgebra A of $(M_{2^{\infty}})_{\mathcal{U}}$ and an automorphism of A that does not extend to an automorphism of $(M_{2^{\infty}})_{\mathcal{U}}$.

Exercise 2. Prove that there exists a separable C^* -algebra B such that every separable C^* -algebra is isomorphic to a subalgebra of $B_{\mathcal{U}}$ (you don't need the Continuum Hypothesis for this).¹

Exercise 3. Suppose that A and B are elementarily equivalent and that t is a type over the empty set. Prove that t is approximately satisfiable in A if and only if it is approximately satisfiable in B.

In Exercise 4 you can use the conclusion of Exercise 3.

Exercise 4. Let F^2 be a finite-dimensional C^{*}-algebra (hence it is a direct sum of full matrix algebras, by the Artin–Wedderburn Theorem). Prove that for a separable unital C^{*}-algebra A the following are equivalent.³

- (1) F unitally embeds into $A_{\mathcal{U}} \cap A'$.
- (2) $\bigotimes_{\mathbb{N}} F$ unitally embeds into $A_{\mathcal{U}} \cap A'$.
- (3) $\bigotimes_{\aleph_1}^{\mathbb{N}} F$ unitally embeds into $A_{\mathcal{U}} \cap A'$.

Exercise 5. Prove that every countably saturated C^{*}-algebra of density character \aleph_1 has cardinality \aleph_1 . (Hint: This is a trick question; you need to prove that the existence of such algebra implies CH.)

Question 6 is about ultrapowers of Banach spaces. The language of Banach spaces is a subset (i.e., reduct) of the language of C^{*}-algebras, obtained by removing the symbols for multiplication and the adjoint operation. (I.e., the terms are linear combinations.) A C^{*}-algebra (Banach space, any metric structure) of density character κ is *saturated* if every approximately satisfiable type of cardinality smaller than κ is realized.

Exercise 6. The ultrapower X of a Banach space X is defined as $\ell_{\infty}(X)/c_{\mathcal{U}}(X)$. Prove that every⁴ ultrapowerof $\ell_2(\mathbb{N})$ is fully saturated.

(Hint: If this looks like a difficult question, you are doing something wrong.)

Exercise 7. (Assumes some familiarity with the spatial tensor product of C^{*}-algebras; see §2.4) Suppose that A and B are C^{*}-algebras. Prove that the natural embedding of $A_{\mathcal{U}} \otimes B_{\mathcal{U}}$ into $(A \otimes B)_{\mathcal{U}}$ is surjective if and only if at least one of A and B is finite-dimensional.

¹It is an open problem, due to Kirchberg, whether the Cuntz algebra \mathcal{O}_2 has the property of B. ²You can do this exercise for $F = M_2(\mathbb{C})$ for full marks, but the general case is, with a good setup, easier.

 $^{{}^{3}\}bigotimes_{\mathbb{N}} F$ and $\bigotimes_{\aleph_{1}} F$ stand for the tensor product of \aleph_{0} (\aleph_{1} , respectively) copies of F; since F is finite-dimensional, they are uniquely defined.

⁴I.e., associated with an arbitrary ultrafilter on an arbitrary set.